Skip to main content
Log in

Grating-coupled surface-plasmon fluorescence DNA sensor

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Genetic analysis is considered to be the ultimate diagnostic approach in many fields, e.g., in medicine for disease detection, in agricultural technology for food and feed authentication, in forensics, to name a few. Consequently, great interest is growing in developing sensitive and reliable analytical tools (biosensors) to identify whole DNA sequences, oligonucleotide fragments, or single-nucleotide polymorphisms (SNPs). In addition, these biosensors are becoming vital tools for clinical diagnosis and point-of-care systems. They need to be of high sensitivity, high specificity, fast response, inexpensive, and easy to use. In this work, we discuss a surface-plasmon fluorescence grating coupler-based biosensor, fabricated on polymer substrates, and with a designed surface binding procedure that offers the direct response required for a sensor to be implemented in a disposable system. These gratings fabricated on polymer substrates using an embossing technique showed excellent and reproducible resonance coupling results. We also present a monitoring protocol for hybridization reactions based on fluorescence resonance energy transfer (FRET) to quench the bulk solution contribution that decreases the sensitivity of the grating biosensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.C. Janegitz, J. Cancino, V. Zucolotto, Disposable biosensors for clinical diagnosis. J. Nanosci. Nanotechnol. 14, 378–389 (2014)

    Article  Google Scholar 

  2. M.H. Yang, S.W. Jeong, S.J. Chang, K.H. Kim, M. Jang, O.C.H. Kim, N.H. Bae et al., Flexible and disposable sensing platforms based on newspaper. ACS Appl. Mater. Interfaces 8, 34978–34984 (2016)

    Article  Google Scholar 

  3. S. Ali, A. Hassan, G. Hassan, C.H. Eun, J. Bae, C.H. Lee, I.J. Kim, Disposable all-printed electronic biosensor for instantaneous detection and classification of pathogens. Sci. Rep. 8, 5920 (2018)

    Article  ADS  Google Scholar 

  4. M. Smith, DNA sequence analysis in clinical medicine, proceeding cautiously. Front. Mol. Biosci. (2017). https://doi.org/10.3389/fmolb.2017.00024

    Article  Google Scholar 

  5. D.R. Call, Challenges and opportunities for pathogen detection using DNA microarrays. Crit. Rev. Microbiol. 31, 91–99 (2005)

    Article  Google Scholar 

  6. V. Grossmann, A. Kohlmann, H.-U. Klein, S. Schindela, S. Schnittger, F. Dicker, M. Dugas et al., Targeted next-generation sequencing detects point mutations, insertions, deletions and balanced chromosomal rearrangements as well as identifies novel leukemia-specific fusion genes in a single procedure. Leukemia 25, 671–680 (2011)

    Article  Google Scholar 

  7. T. Liebermann, W. Knoll, P. Sluka, R. Herrmann, Complement hybridization from solution to surface-attached probe-oligonucleotides observed by surfaceplasmon-field-enhanced fluorescence spectroscopy. Colloid Surf. A 169, 337–350 (2000)

    Article  Google Scholar 

  8. D. Kambhampati, P.E. Nielsen, W. Knoll, Investigating the kinetics of DNA–DNA and PNA–DNA interactions using surface plasmon resonance-enhanced fluorescence spectroscopy. Biosens. Bioelectron. 16, 1109–1118 (2001)

    Article  Google Scholar 

  9. X. Su, Y.J. Wu, R. Robelek, W. Knoll, Surface plasmon resonance spectroscopy and quartz crystal microbalance study of streptavidin film structure effects on biotinylated DNA assembly and target DNA hybridization. Langmuir 21, 348–353 (2005)

    Article  Google Scholar 

  10. J. Liu, S. Tian, L. Tiefenauer, P.E. Nielsen, W. Knoll, Simultaneously amplified electrochemical and surface plasmon optical detection of DNA hybridization based on ferrocene−streptavidin conjugates. Anal. Chem. 77, 2756–2761 (2005)

    Article  Google Scholar 

  11. H.U. Khan, M.E. Roberts, O. Johnson, R. Förch, W. Knoll, Z. Bao, In situ, label-free DNA detection using organic transistor sensors. Adv. Mater. 22, 4452–4456 (2010)

    Article  Google Scholar 

  12. T. Neumann, W. Knoll, Mismatch discrimination in oligonucleotide hybridization reactions using single strand binding protein. A surface plasmon fluorescence study. Isr. J. Chem 41, 69–78 (2001)

    Article  Google Scholar 

  13. T. Neumann, M.L. Johansson, D. Kambhampati, W. Knoll, Surface-Plasmon Fluorescence Spectroscopy. Adv. Funct. Mater. 12, 575–586 (2002)

    Article  Google Scholar 

  14. T. Liebermann, W. Knoll, Surface-plasmon field-enhanced fluorescence spectroscopy. Colloid Surf. A 171, 115–130 (2000)

    Article  Google Scholar 

  15. E. Kretschmann, H. Raether, Notizen: radiative decay of non radiative surface plasmons excited by light. Z. Naturforsch. A23, 2135–2136 (1968)

    Article  ADS  Google Scholar 

  16. F. Yu, D. Yao, W. Knoll, Oligonucleotide hybridization studied by a surface plasmon diffraction sensor (SPDS). Nucleic Acids Res. 32, e75 (2004)

    Article  Google Scholar 

  17. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  18. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988), pp. 4–39

    Book  Google Scholar 

  19. W. Knoll, Interfaces and thin films as seen by bound electromagnetic waves. Annu. Rev. Phys. Chem. 49, 569–638 (1988)

    Article  ADS  Google Scholar 

  20. W.L. Barnes, A. Dereux, T.W. Ebbesen, Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)

    Article  ADS  Google Scholar 

  21. W. Knoll, M.R. Philpott, J.D. Swalen, A.J. Girlando, Surface plasmon enhanced Raman spectra of monolayer assemblies. Chem. Phys. 77, 2254–2261 (1982)

    ADS  Google Scholar 

  22. A. Nemetz, T. Fischer, A. Ulman, W. Knoll, Surface plasmon enhanced Raman spectroscopy with HS(CH2)21OH on different metals. J. Chem. Phys. 98, 5912–5920 (1993)

    Article  ADS  Google Scholar 

  23. A. Au, H.L. Garvin, Holographic surface grating fabrication techniques, in Proc. SPIE 0240, periodic structures, gratings, moire patterns, and diffraction phenomena I 240, 13–17 (1981)

  24. A. Nicol, W. Knoll, Characteristics of fluorescence emission excited by grating-coupled surface plasmons. Plasmonics 13, 2337–2343 (2018)

    Article  Google Scholar 

  25. J. Zhu, H. Xie, M. Tang, X. Li, Optimum design of processing condition and experimental investigation of grating fabrication with hot embossing lithography. Acta Mech. Solida Sin. 22, 665–671 (2009)

    Article  Google Scholar 

  26. A. Rezem, A. Günther, M. Rahlves, B. Roth, E. Reithmeier, Hot embossing of polymer optical waveguides for sensing applications. Proced. Technol. 15, 514–520 (2014)

    Article  Google Scholar 

  27. A. Girlando, A. Knoll, M.R. Philpott, Plasmon surface polariton luminescence from periodic metal gratings. Solid State Commun. 38, 895–898 (1981)

    Article  ADS  Google Scholar 

  28. P. Schuck, Use of surface plasmon resonance to probe the equilibrium and dynamic aspects of interactions between biological macromolecules. Annu. Rev. Biophys. Biomol. Struct. 26, 541–566 (1997)

    Article  Google Scholar 

  29. P.R. Selvin, The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 7, 724–729 (2000)

    Article  Google Scholar 

  30. J. Widengren, E. Schweinberger, S. Berger, C.A.M. Seidel, Two new concepts to measure fluorescence resonance energy transfer via fluorescence correlation spectroscopy: theory and experimental realizations. J. Phys. Chem. A 105, 851–6866 (2001)

    Article  Google Scholar 

  31. T. Ha, T.H. Enderle, D.F. Ogletree, D.S. Chemla, P.R. Selvin, S. Weiss, Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. PNAS 93, 6264–6268 (1996)

    Article  ADS  Google Scholar 

  32. S. Granier, S. Kim, J.J. Fung, M.P. Bokoch, C. Parnot, FRET-based measurement of GPCR conformational changes. Methods Mol. Biol. 552, 253–268 (2009)

    Article  Google Scholar 

  33. J.R. Lakowicz, Principles of Fluorescence Spectroscopy 1999, 2nd edn. (Kluwer Academic/Plenum Publishers, New York, 1999).

    Book  Google Scholar 

Download references

Acknowledgements

This work was performed with the support of CEST Competence Centre for Electrochemical Surface Technology, the AIT Austrian Institute of Technology, and the British University in Egypt, BUE.

Author information

Authors and Affiliations

Authors

Contributions

AK fabricated the disposable polymer gratings, measured the SPFS on gratings, designed the Anti-DNA, and performed the FRET measurements in the bulk and on the surface. AN fabricated the Master grating and measured the affinities between the DNA on the grating surface. Both AK and AN worked under the supervision of WK. The manuscript was written through contributions of all the authors. All the authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Amal Kasry or Wolfgang Knoll.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 436 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasry, A., Nicol, A. & Knoll, W. Grating-coupled surface-plasmon fluorescence DNA sensor. Appl. Phys. B 127, 68 (2021). https://doi.org/10.1007/s00340-021-07619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-021-07619-4

Navigation