Skip to main content
Log in

Learning an Optimal Feedback Operator Semiglobally Stabilizing Semilinear Parabolic Equations

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

Stabilizing feedback operators are presented which depend only on the orthogonal projection of the state onto the finite-dimensional control space. A class of monotone feedback operators mapping the finite-dimensional control space into itself is considered. The special case of the scaled identity operator is included. Conditions are given on the set of actuators and on the magnitude of the monotonicity, which guarantee the semiglobal stabilizing property of the feedback for a class of semilinear parabolic-like equations. Subsequently an optimal feedback control minimizing the quadratic energy cost is computed by a deep neural network, exploiting the fact that the feedback depends only on a finite dimensional component of the state. Numerical simulations demonstrate the stabilizing performance of explicitly scaled orthogonal projection feedbacks, and of deep neural network feedbacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Azmi, B., Rodrigues, S.S.: Oblique projection local feedback stabilization of nonautonomous semilinear damped wave-like equations. J. Differ. Equ. 269(7), 6163–6192 (2020). https://doi.org/10.1016/j.jde.2020.04.033

    Article  MathSciNet  MATH  Google Scholar 

  2. Azouani, A., Titi, E.S.: Feedback control of nonlinear dissipative systems by finite determining parameters—a reaction-diffusion paradigm. Evol. Equ. Control Theory 3(4), 579–594 (2014). https://doi.org/10.3934/eect.2014.3.579

    Article  MathSciNet  MATH  Google Scholar 

  3. Badra, M., Takahashi, T.: Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier-Stokes system. SIAM J. Control Optim. 49(2), 420–463 (2011). https://doi.org/10.1137/090778146

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball, J.M.: Remarks on blow-up and nonexistence theorems for nonlinear evolution equations. Q. J. Math. 28(4), 473–486 (1977). https://doi.org/10.1093/qmath/28.4.473

    Article  MathSciNet  MATH  Google Scholar 

  5. Balogh, A., Krstic, M.: Burgers’ equation with nonlinear boundary feedback: \(h^1\) stability, well-posedness and simulation. Math. Probl. Eng. 6, 189–200 (2000). https://doi.org/10.1155/S1024123X00001320

    Article  MathSciNet  MATH  Google Scholar 

  6. Barbu, V.: Stabilization of Navier–Stokes Flows. Communications and Control Engineering Series. Springer, London (2011). https://doi.org/10.1007/978-0-85729-043-4

  7. Barbu, V.: Stabilization of Navier–Stokes equations by oblique boundary feedback controllers. SIAM J. Control Optim. 50(4), 2288–2307 (2012). https://doi.org/10.1137/110837164

    Article  MathSciNet  MATH  Google Scholar 

  8. Barbu, V.: Boundary stabilization of equilibrium solutions to parabolic equations. IEEE Trans. Autom. Control 58(9), 2416–2420 (2013). https://doi.org/10.1109/TAC.2013.2254013

    Article  MathSciNet  MATH  Google Scholar 

  9. Barbu, V., Triggiani, R.: Internal stabilization of Navier–Stokes equations with finite-dimensional controllers. Indiana Univ. Math. J. 53(5), 1443–1494 (2004). https://doi.org/10.1512/iumj.2004.53.2445

    Article  MathSciNet  MATH  Google Scholar 

  10. Barbu, V., Lasiecka, I., Triggiani, R.: Abstract settings for tangential boundary stabilization of Navier–Stokes equations by high- and low-gain feedback controllers. Nonlinear Anal. 64(12), 2704–2746 (2006). https://doi.org/10.1016/j.na.2005.09.012

    Article  MathSciNet  MATH  Google Scholar 

  11. Barbu, V., Rodrigues, S.S., Shirikyan, A.: Internal exponential stabilization to a nonstationary solution for 3D Navier–Stokes equations. SIAM J. Control Optim. 49(4), 1454–1478 (2011). https://doi.org/10.1137/100785739

    Article  MathSciNet  MATH  Google Scholar 

  12. Bertsekas, D.P.: Reinforcement Learning and Optimal Control. Athena Scientific, Belmont (2019)

    Google Scholar 

  13. Cochran, J., Vazquez, R., Krstic, M.: Backstepping boundary control of Navier–Stokes channel flow: a 3D extension. In: Proceedings of the 2006 American Control Conference, Minneapolis, MN, USA, pp. 769–774, 6 (2006). https://doi.org/10.1109/ACC.2006.1655449

  14. Demengel, F., Demengel, G.: Functional Spaces for the Theory of Elliptic Partial Differential Equations. Universitext. Springer (2012). https://doi.org/10.1007/978-1-4471-2807-6

  15. Dolgov, S., Kalise, D., Kunisch, K.: Tensor decompositions for high-dimensional Hamilton–Jacobi–Bellman equations (2019). arXiv:1908.01533

  16. Fisher, R.A.: The wave of advance of advantageous genes. Ann. Hum. Genet. 7(4), 355–369 (1937). https://doi.org/10.1111/j.1469-1809.1937.tb02153.x

    Article  MATH  Google Scholar 

  17. Grishakov, S., Degtyarenko, P.N., Degtyarenko, N.N., Elesin, V.F., Kruglov, V.S.: Time dependent Ginzburg–Landau equations for modeling vortices dynamics in type-II superconductors with defects under a transport current. Phys. Procedia 36, 1206–1210 (2012). https://doi.org/10.1016/j.phpro.2012.06.202

    Article  Google Scholar 

  18. Gugat, M., Troeltzsch, F.: Boundary feedback stabilization of the Schlögl system. Autom. J. IFAC 51, 192–1199 (2015). https://doi.org/10.1016/j.automatica.2014.10.106

    Article  MATH  Google Scholar 

  19. Halanay, A., Murea, C.M., Safta, C.A.: Numerical experiment for stabilization of the heat equation by Dirichlet boundary control. Numer. Funct. Anal. Optim. 34(12), 1317–1327 (2013). https://doi.org/10.1080/01630563.2013.808210

    Article  MathSciNet  MATH  Google Scholar 

  20. Krstic, M., Magnis, L., Vazquez, R.: Nonlinear control of the viscous Burgers equation: trajectory generation, tracking, and observer design. J. Dyn. Syst. Meas. Control 131(2), 021012(1–8) (2009). https://doi.org/10.1115/1.3023128

  21. Kunisch, K., Rodrigues, S.S.: Explicit exponential stabilization of nonautonomous linear parabolic-like systems by a finite number of internal actuators. ESAIM Control Optim. Calc. Var. 25, Art 67. (2019) https://doi.org/10.1051/cocv/2018054

  22. Kunisch, K., Rodrigues, S.S.: Oblique projection based stabilizing feedback for nonautonomous coupled parabolic-ODE systems. Discret. Contin. Dyn. Syst. 39(11), 6355–6389 (2019). https://doi.org/10.3934/dcds.2019276

    Article  MathSciNet  MATH  Google Scholar 

  23. Kunisch, K., Walter, D.: Semiglobal optimal feedback stabilization of autonomous systems via deep neural network approximation. ESAIM Control Optim. Calc. Var. 27, 16 (2021). https://doi.org/10.1051/cocv/2021009

    Article  MathSciNet  MATH  Google Scholar 

  24. Le, D.: Global existence for some cross diffusion systems with equal cross diffusion/reaction rates. Adv. Nonlinear Stud. (2020). https://doi.org/10.1515/ans-2020-2096

  25. Levine, H.A.: Some nonexistence and instability theorems for solutions of formally parabolic equations of the form \({P}u_t=-{A}u+{\cal{F}}(u)\). Arch. Ration. Mech. Anal. 51(5), 371–386 (1973). https://doi.org/10.1007/BF00263041

    Article  MATH  Google Scholar 

  26. Lunasin, E., Titi, E.S.: Finite determining parameters feedback control for distributed nonlinear dissipative systems - a computational study. Evol. Equ. Control Theory 6(4), 535–557 (2017). https://doi.org/10.3934/eect.2017027

    Article  MathSciNet  MATH  Google Scholar 

  27. Merle, F., Zaag, H.: Optimal estimates for blowup rate and behavior for nonlinear heat equations. Commun. Pure Appl. Math. 51(2), 139–196 (1998). 10.1002/(SICI)1097-0312(199802)51:2\(<\)139::AID-CPA2\(>\)3.0.CO;2-C

  28. Olmos, D., Shizgal, B.D.: A pseudospectral method of solution of Fisher’s equation. J. Comput. Appl. Math. 193(1), 219–242 (2006). https://doi.org/10.1016/j.cam.2005.06.028

    Article  MathSciNet  MATH  Google Scholar 

  29. Phan, D., Rodrigues, S.S.: Stabilization to trajectories for parabolic equations. Math. Control Signals Syst. 30(2), Art 11. (2018) https://doi.org/10.1007/s00498-018-0218-0

  30. Raymond, J.-P.: Stabilizability of infinite-dimensional systems by finite-dimensional controls. Comput. Methods Appl. Math. 19(4), 797–811 (2019). https://doi.org/10.1515/cmam-2018-0031

    Article  MathSciNet  MATH  Google Scholar 

  31. Rodrigues, S.S.: Semiglobal exponential stabilization of nonautonomous semilinear parabolic-like systems. Evol. Equ. Control Theory 9(3), 635–672 (2020). https://doi.org/10.3934/eect.2020027

    Article  MathSciNet  MATH  Google Scholar 

  32. Rodrigues, S.S.: Oblique projection exponential dynamical observer for nonautonomous linear parabolic-like equations. SIAM J. Control Optim. 59(1), 464–488 (2021). https://doi.org/10.1137/19M1278934

    Article  MathSciNet  MATH  Google Scholar 

  33. Rodrigues, S.S.: Oblique projection output-based feedback stabilization of nonautonomous parabolic equations. Automatica J. IFAC 129, 109621 (2021). https://doi.org/10.1016/j.automatica.2021.109621

  34. Rodrigues, S.S., Sturm, K.: On the explicit feedback stabilisation of one-dimensional linear nonautonomous parabolic equations via oblique projections. IMA J. Math. Control Inf. 37(1), 175–207 (2020). https://doi.org/10.1093/imamci/dny045

    Article  MATH  Google Scholar 

  35. Schlögl, F.: Chemical reaction models for non-equilibrium phase transitions. Z. Phys. 253, 147–161 (1972). https://doi.org/10.1007/BF01379769

    Article  Google Scholar 

  36. Shigesada, N., Kawasaki, K., Teramoto, E.: Spatial segregation of interacting species. J. Theor. Biol. 79(1), 83–99 (1979). https://doi.org/10.1016/0022-5193(79)90258-3

    Article  MathSciNet  Google Scholar 

  37. Tsubakino, D., Krstic, M., Hara, Sh.: Backstepping control for parabolic PDEs with in-domain actuation. In: Proceedings of the American Control Conference (ACC), Montréal, Canada, pp. 2226–2231 (2012). https://doi.org/10.1109/ACC.2012.6315358

  38. Weinan, E.: Dynamics of vortex liquids in Ginzburg–Landau theories with applications to superconductivity. Phys. Rev. B 50, 1126–1135 (1994). https://doi.org/10.1103/PhysRevB.50.1126

    Article  Google Scholar 

  39. Wu, M.Y.: A note on stability of linear time-varying systems. IEEE Trans. Autom. Control 19(2), 162 (1974). https://doi.org/10.1109/TAC.1974.1100529

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Karl Kunisch and Sérgio S. Rodrigues were supported by the ERC advanced grant 668998 (OCLOC) under the EU’s H2020 research program. Sérgio S. Rodrigues acknowledges partial support from Austrian Science Fund (FWF):  P 33432-NBL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Walter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 A.1 Proof of Lemma 3.3

Using Lemma 3.2 with \((y_1,y_2)=(y,0)\), we find

$$\begin{aligned} 2({{\mathcal {N}}}(y),Ay)_H&\le \gamma _2 \left| y\right| _{\text {D}(A)}^{2} +D_1 \sum \limits _{j=1}^n \left| y\right| _{\text {D}(A)}^\frac{2\zeta _{2j}}{1-\delta _{2j}} \left| y\right| _{V}^{\frac{2\zeta _{1j}+2\delta _{1j}}{1-\delta _{2j}}},\quad \text{ for } \text{ all }\quad \gamma _2>0, \end{aligned}$$
(A.1)

with \(D_1{:}{=}\left( 1+\gamma _2^{-\frac{1+\Vert \delta _2\Vert }{1-\Vert \delta _2\Vert } }\right) {\overline{C}}_{{{\mathcal {N}}}1}\). Next, we recall the young inequality in the form

$$\begin{aligned} ab\le \tfrac{1}{s}\eta ^sa^s+\tfrac{s-1}{s}\eta ^{-\frac{s}{s-1}}a^\frac{s}{s-1}, \quad \text{ for } \text{ all }\quad a\ge 0,\;b\ge 0,\;\eta>0,\;s>1, \end{aligned}$$

(cf. [31, Appendix A.1]), which allow us to obtain, with

$$\begin{aligned} s=s_j=\tfrac{1-\delta _{2j}}{\zeta _{2j}}>1, \qquad \tfrac{s_j-1}{s_j}=\tfrac{1-\delta _{2j}-\zeta _{2j}}{1-\delta _{2j}},\qquad \text{ in } \text{ case }\quad \zeta _{2j}>0, \end{aligned}$$

the inequality

$$\begin{aligned}&\left| y\right| _{\text {D}(A)}^\frac{2\zeta _{2j}}{1-\delta _{2j}} \left| y\right| _{V}^{\frac{2\zeta _{1j}+2\delta _{1j}}{1-\delta _{2j}}}\\&\quad \le \tfrac{\zeta _{2j}}{1-\delta _{2j}}\eta _j^\frac{1-\delta _{2j}}{\zeta _{2j}}\left| y\right| _{\text {D}(A)}^2+\tfrac{1-\delta _{2j}-\zeta _{2j}}{1-\delta _{2j}} \eta _j^{-\frac{1-\delta _{2j}}{1-\delta _{2j}-\zeta _{2j}}} \left| y\right| _{V}^{\frac{2\zeta _{1j}+2\delta _{1j}}{1-\delta _{2j}-\zeta _{2j}}}, \quad \text{ for } \text{ all }\quad \eta _j>0. \end{aligned}$$

Now, for any given \(\gamma _3>0\), we choose

$$\begin{aligned} \eta _j= (\tfrac{1-\delta _{2j}}{\zeta _{2j}}\gamma _3)^\frac{\zeta _{2j}}{1-\delta _{2j}},\quad \text{ in } \text{ case }\quad \zeta _{2j}>0. \end{aligned}$$

which gives us

$$\begin{aligned}&\left| y\right| _{\text {D}(A)}^\frac{2\zeta _{2j}}{1-\delta _{2j}} \left| y\right| _{V}^{\frac{2\zeta _{1j}+2\delta _{1j}}{1-\delta _{2j}}}\\&\quad \le \gamma _3\left| y\right| _{\text {D}(A)}^2+\tfrac{1-\delta _{2j}-\zeta _{2j}}{1-\delta _{2j}} (\tfrac{1-\delta _{2j}}{\zeta _{2j}}\gamma _3)^{-\frac{\zeta _{2j}}{1-\delta _{2j}-\zeta _{2j}}} \left| y\right| _{V}^{\frac{2\zeta _{1j}+2\delta _{1j}}{1-\delta _{2j}-\zeta _{2j}}}, \quad \text{ in } \text{ case }\quad \zeta _{2j}>0. \end{aligned}$$

Recalling (A.1), it follows that

$$\begin{aligned} 2({{\mathcal {N}}}(y),Ay)_H&\le \gamma _2 \left| y\right| _{\text {D}(A)}^{2} +D_1 \sum \limits _{\begin{array}{c} 1\le j\le n\\ \zeta _{2j}=0 \end{array}} \left| y\right| _{V}^{\frac{2\zeta _{1j}+2\delta _{1j}}{1-\delta _{2j}}}\nonumber \\&\quad +D_1 \sum \limits _{ \begin{array}{c} 1\le j\le n\\ \zeta _{2j}>0 \end{array}}\left( \gamma _3\left| y\right| _{\text {D}(A)}^2+ D_{2}\left| y\right| _{V}^{\frac{2\zeta _{1j}+2\delta _{1j}}{1-\delta _{2j}-\zeta _{2j}}}\right) \nonumber \\&\le (\gamma _2 +D_1\gamma _3 n)\left| y\right| _{\text {D}(A)}^{2} +D_1(1+D_2) \sum \limits _{j=1}^n \left| y\right| _{V}^{\frac{2\zeta _{1j}+2\delta _{1j}}{1-\delta _{2j}-\zeta _{2j}}}, \end{aligned}$$
(A.2a)

for all \(\gamma _2>0\), \(\gamma _3>0\), with

$$\begin{aligned} D_2&=\max _{\begin{array}{c} 1\le j\le n\\ \zeta _{2j}\ne 0 \end{array}} \tfrac{1-\delta _{2j}-\zeta _{2j}}{1-\delta _{2j}} (\tfrac{1-\delta _{2j}}{\zeta _{2j}}\gamma _3)^{-\frac{\zeta _{2j}}{1-\delta _{2j}-\zeta _{2j}}}. \end{aligned}$$
(A.2b)

For an arbitrary given \(\gamma _4>0\), we may set \(\gamma _2=\frac{\gamma _4}{2}\) and \(\gamma _3=\frac{\gamma _4}{2nD_1}\), leading us to

$$\begin{aligned} 2({{\mathcal {N}}}(y),Ay)_H \le \gamma _4 \left| y\right| _{\text {D}(A)}^{2} +D_1(1+D_2) \sum \limits _{j=1}^n \left| y\right| _{V}^{\frac{2\zeta _{1j}+2\delta _{1j}}{1-\delta _{2j}-\zeta _{2j}}}, \quad \text{ for } \text{ all }\quad \gamma _4>0. \end{aligned}$$

Observe that

$$\begin{aligned} \tfrac{2\zeta _{1j}+2\delta _{1j}}{1-\delta _{2j}-\zeta _{2j}}\ge 2 \quad&\Longleftrightarrow \quad \zeta _{1j}+\delta _{1j}\ge 1-\delta _{2j}-\zeta _{2j}\\&\Longleftrightarrow \quad \delta _{2j}+\delta _{1j}-1\ge -\zeta _{1j}-\zeta _{2j}, \end{aligned}$$

hence, from Assumption 2.4, we have that

$$\begin{aligned} p_j{:}{=}2-\tfrac{2\zeta _{1j}+2\delta _{1j}}{1-\delta _{2j}-\zeta _{2j}}\ge 0 \end{aligned}$$

and can write

$$\begin{aligned} 2({{\mathcal {N}}}(y),Ay)_H&\le \gamma _4 \left| y\right| _{\text {D}(A)}^{2} +D_1(1+D_2) \left| y\right| _{V}^2\sum \limits _{j=1}^n \left| y\right| _{V}^{p_j}\\&\le \gamma _4 \left| y\right| _{\text {D}(A)}^{2} +nD_1(1+D_2) \left| y\right| _{V}^2(1+\left| y\right| _{V}^{\Vert p\Vert }) \quad \text{ for } \text{ all }\quad \gamma _4>0, \end{aligned}$$

with

$$\begin{aligned} \Vert p\Vert&=\max _{1\le j\le n}p_j,\qquad D_1=\left( 1+(\tfrac{\gamma _4}{2})^{-\frac{1+\Vert \delta _2\Vert }{1-\Vert \delta _2\Vert } }\right) {\overline{C}}_{{{\mathcal {N}}}1},\\ \quad \text{ and }\quad D_2&=\max _{\begin{array}{c} 1\le j\le n\\ \zeta _{2j}\ne 0 \end{array}} \tfrac{1-\delta _{2j}-\zeta _{2j}}{1-\delta _{2j}} (\tfrac{1-\delta _{2j}}{\zeta _{2j}}\tfrac{\gamma _4}{2nD_1})^{-\frac{\zeta _{2j}}{1-\delta _{2j}-\zeta _{2j}}}. \end{aligned}$$

This ends the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunisch, K., Rodrigues, S.S. & Walter, D. Learning an Optimal Feedback Operator Semiglobally Stabilizing Semilinear Parabolic Equations. Appl Math Optim 84 (Suppl 1), 277–318 (2021). https://doi.org/10.1007/s00245-021-09769-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09769-5

Keywords

Navigation