Skip to main content

Advertisement

Log in

Ceramic Composition Binder Suspensions in the Al2O3–SiO2–SiC System and Ceramic Concretes Based Upon Them

  • SCIENTIFIC RESEARCH AND DEVELOPMENT
  • Published:
Refractories and Industrial Ceramics Aims and scope

Composite binders with an SiC content from 10 to 40% are prepared on the basis of high-alumina chamotte and silicon carbide powder previously dispersed in water. Ceramic concretes are prepared based on highly concentrated ceramic binder suspensions (HCBS) and mullite polydispersed filler by vibration casting and their properties are studied. Specimens containing 15% SiC have maximum strength in compression (150 MPa) with a firing temperature of 1200°C. Depending on firing temperature (1200 and 1400°C) and SiC content specimen weight gain specifying the degree of SiC oxidation is in the range 0.2 – 2.6%. Increased heat resistance for specimens containing 10% SiC in the matrix system is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. I. S. Kainarskii and É. V. Degtyareva, Carborundum Refractories [in Russian], Metallurgiya, Khar’kov (1063).

  2. Yu. E. Pivinskii, Unmolded Refractories, Vol. 1, Book 1. General Questions of Technology [in Russian], Teploenergetik, Moscow (2003).

  3. J. R. Oliveira and V. C. Pandolfelli, “Deflocculation of Al2O3–SiC suspension,” Am. Ceram. Soc. Bull., 80(2), 47 – 53 (2001).

    CAS  Google Scholar 

  4. G. G. Gnesin, Silicon Carbide Material [in Russian], Metallurgiya, Moscow 91977).

  5. I. Allenshtein, et al., G. Ruchka dn Kh. Vutnau (editors), Refractory Materials. Structure, Properties. Testing: handbook (translated from German], Intermet Inzhiniring, Moscow (2010).

  6. E. M. Grishpun, Yu. E. Pivinskii, E. V. Rozhkov, et al., “Production and service of high alumina ceramic castables. 1. Ramming mixtures based on modified bauxite HCBS,” Refract. Ind. Ceram., 41(3/4), 104 – 108 (2000).

    Article  CAS  Google Scholar 

  7. E. V. Rozhkov, Yu. E. Pivinskii, and M. Z. Naginskii, “Production and service of high-alumina ceramic castables. 2. Properties and service of vibration-placed castables based on bauxite-modified highly concentrated ceramic binding suspensions (HCBS) for use in blast-furnace runners,” Refract. Ind. Ceram., 42(5/6), 209 – 215 (2001).

    Article  CAS  Google Scholar 

  8. Yu. E. Pivinskii, E. M. Grishpun, and A. M. Gorokhovskii, “Engineering, manufacturing and servicing of shaped and unshaped refractories based on highly concentrated ceramic binding suspensions,” Refract. Ind. Ceram., 56(3), 245 – 253 (2015).

    Article  CAS  Google Scholar 

  9. Yu. E. Pivinskii and M. A. Skuratov, “Cast (self-flow) ceramic castables. 3. Rheotechnological properties of molding systems for fabrication of silicon carbide ceramic castables,” Refract. Ind. Ceram., 41(11/12), 401 – 404 (2000).

    Article  CAS  Google Scholar 

  10. M. A. Skuratov and Yu. E. Pivinskii, “Cast (self-flow) ceramic castables. 4. Spreadability of molding systems and some properties of mullite-silicon carbide ceramic castables,” Refract. Ind. Ceram., 42(1/2), 23 – 29 (2001).

    Article  CAS  Google Scholar 

  11. Yu. E. Pivinskii and P. V. Dyakin, “Research in the field of composite materials based on HCBS and refractory materials based on the system Al2O3–SiO2–SiC. Part 1,” Refract. Ind. Ceram., 59(2), 124 – 133 (2018).

    Article  CAS  Google Scholar 

  12. Yu. E. Pivinskii and P. V. Dyakin, “Research in the field of composite materials based on HCBS and refractory materials based on the system Al2O3–SiO2–SiC. Part 2,” Refract. Ind. Ceram., 59(3), 247 – 251 (2018).

    Article  CAS  Google Scholar 

  13. P. V. Dyakin, Yu. E. Pivinskii, and A. Yu. Kolobov, “Research in the field of composite materials based on HCBS and refractory materials based on the system Al2O3–SiO2–SiC. Part 3,” Refract. Ind. Ceram., 59(5), 445 – 453 (2019).

    Article  CAS  Google Scholar 

  14. Yu. E. Pivinskii and P. V. Dyakin, “Research in the field of composite materials based on HCBS and refractory materials based on the system Al2O3–SiO2–SiC. Part 4,” Refract. Ind. Ceram., 60(2), 142 – 148 (2019).

    Article  CAS  Google Scholar 

  15. Yu. E. Pivinskii, P. V. Dyakin, and L. V. Ostryakov, “Research in the field of preparing molded and unmolded refractories based on high-alumina HCBS. Part 14. Composition and some properties of composite composition ceramic concretes in the system Al2O3–SiO2–SiC-C,” Refract. Ind. Ceram., 59(2), 124 – 133 (2018).

    Article  CAS  Google Scholar 

  16. P. V. Dyakin, Yu. E. Pivinskii, D. S. Prokhorenkov, et al., “Phase composition, structure and some properyties of materials based on bauxite complex composition HCBS in the Al2O3–SiO2–SiC–C system,” Vestn. BGTU im V. G. Shukhova, No. 2, 115 – 125 (2020).

    Google Scholar 

  17. V. A. Doroganov and Yu. N. Trepalina, “Highly concentrated ceramic binder suspensions based on silicon carbide,” Refract. Ind. Ceram., 51(4), 302 – 304 (2010).

    Article  CAS  Google Scholar 

  18. V. A. Doroganov, E. A. Doroganov, E. I. Evtushenko, et al., “Refractory materials based on artificial ceramic binder suspensions of silicon carbide composition,” Vestn. BGTU im V. G. Shukhova, No. 4, 156 – 160 (2013).

    Google Scholar 

  19. V. A. Doroganov, N. A. Peretokina, E. A. Doroganov, et al., “Study of nano-differentiated silicon carbide binders and composites based on them,” Refract. Ind. Ceram., 55(5), 465 – 468 (2015).

    Article  CAS  Google Scholar 

  20. S. V. Zaitsev, V. A. Doroganov, E. A. Doroganov, et al., “Study of artificial ceramic binder properties in the system Al2O3–SiO2–SiC,” Refract. Ind. Ceram., 57(5), 526 – 530 (2017).

    Article  CAS  Google Scholar 

  21. S. V. Zaitsev, V. A. Doroganov, E. A. Doroganov, et al., “Study of artificial ceramic binders of mullite-silicon carbide composition composites based on them,” Refract. Ind. Ceram., 58(1), 109 – 112 (2017).

    Article  CAS  Google Scholar 

  22. S. V. Zaitsev, V. A. Doroganov, E. A. Doroganov, et al., “Artificial ceramic binders based on silicon and silicon carbide for silicon-carbide refractories in a nitride matrix,” Refract. Ind. Ceram., 60(5), 439 – 444 (2020).

    Article  CAS  Google Scholar 

  23. Yu. E. Pivinskii and P. L. Mityakin, “Rheological and binding properties of high-alumina suspensions,” Refractories, 22(5/6), 292 – 298 (1981).

    Article  Google Scholar 

  24. Yu. E. Pivinskii, Ceramic Binders and Ceramic Concretes [in Russian], Metallurgiya, Moscow (1990).

    Google Scholar 

  25. Yu. E. Pivinskii, Rheology of Dispersed Systems, HCBS, and ceramic Concretes. Elements of Nanotechnology in Silicate Material Science, Vol. 3 [in Russian] Politekhnika, St. Petersburg (2012).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Pivinskii.

Additional information

Translated from Novye Ogneupory, No. 11, pp. 16 – 20, November, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pivinskii, Y.E., Skuratov, M.A., Doroganov, V.A. et al. Ceramic Composition Binder Suspensions in the Al2O3–SiO2–SiC System and Ceramic Concretes Based Upon Them. Refract Ind Ceram 61, 639–643 (2021). https://doi.org/10.1007/s11148-021-00534-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11148-021-00534-3

Keywords

Navigation