Skip to main content

Advertisement

Log in

A modeling methodology for collaborative evaluation of future automotive innovations

  • Regular Paper
  • Published:
Software and Systems Modeling Aims and scope Submit manuscript

Abstract

The rapid introduction of innovations plays a major role in automotive industries. Today, once a member of the automotive value chain devises an innovation, the time-to-market could be years due to traditional forms of collaboration. It is thus indispensable for companies to collaborate on reducing the time to find and design innovations in order to remain competitive. One idea is to streamline the innovation process outside current product development cycles (7 + years) within the automotive value chain. In our work, we propose a modeling methodology offering a better collaboration in this innovation design phase. Beginning with the innovation idea, our approach allows capturing requirements, functional, and structural aspects of the innovation under design in an innovation model with defined semantics. This innovation model can then be exchanged between automotive partners, who in their turn can refine and exchange the refined model within an iterative process toward an initial innovation evaluation. Additionally, we propose a generic description of how such innovation models can be captured in SysML, a system modeling standard. Our approach is illustrated by a “wireless car charging” innovation case-study showing how a possible collaboration at different modeling abstraction levels could take place and how consistency of the models exchanged can be verified. The consistency check is exemplified by timing specifications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Feldner, I., Heer, C., Kogel, T., Mauderer, A., Schleifer, R., Thanner, M., Thudt, R.: “Whitepaper: Automotive Virtual Prototyping Platform,” edacentrum e. V., Tech. Rep., 2019. [Online]. https://www.edacentrum.de/white-paper-automotive-virtual-prototyping-platform-verfuegbar

  2. “Road vehicles—Functional safety—Part 1: Vocabulary,” International Organization for Standardization, Geneva, CH, Standard, 2018. [Online]. https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en:term:3.178

  3. Friedenthal, S., Moore, A., Steiner, R.: A Practical Guide to SysML: The Systems Modeling Language. Morgan Kaufmann, San Francisco (2014)

    Google Scholar 

  4. Atkinson, C., Kuhne, T.: Model-driven development: a metamodeling foundation. IEEE Softw. 20(5), 36–41 (2003)

    Article  Google Scholar 

  5. Böde, E., Büker, M., Damm, W., Ehmen, G., Fränzle, M., Gerwinn, S., Goodfellow, T., Grüttner, K., Josko, B., Koopmann, B., et al..: “Design paradigms for multi-layer time coherency in ADAS and automated driving (multic),” in FAT-Schriftenreihe 302, 302nd ed., ser. FAT-Schriftenreihe. Forschungsvereinigung Automobiltechnik e.V. (FAT), 10 2017, no. 302. [Online]. https://www.vda.de/en/services/Publications/fat-schriftenreihe-302.html

  6. Sadovykh, A., Afzal, W., Truscan, D., Pierini, P., Bruneliere, H., Bagnato, A., Gómez, A., Cabot, J., Avila-García, O.: “On a tool-supported model-based approach for building architectures and roadmaps: The megam@ rt2 project experience,” Microprocessors and Microsystems, vol. 71, 2019. [Online]. http://www.sciencedirect.com/science/article/pii/S0141933119300432

  7. Pohl, K., Hönninger, H., Achatz, R., Broy, M., Model-Based Engineering of Embedded Systems: The SPES: Methodology, vol 01. Springer, Berlin, 2012 (2020)

  8. Dickopf, T., Eigner, M., Apostolov, H., et al.: The KSCM as part of a holistic methodology for the development of cybertronic systems in the context of engineering 4.0. In: DS 92: Proceedings of the DESIGN 2018 15th International Design Conference, 01 2018, pp. 2855–2866 (2018)

  9. Eigner, M., Koch, W., Muggeo, C.: Modellbasierter Entwicklungsprozess Cybertronischer Systeme: Der PLM-Unterstützte Referenzentwicklungsprozess für Produkte und Produktionssysteme, vol. 01. Springer, Berlin (2017)

    Book  Google Scholar 

  10. Morkevicius, A., Aleksandraviciene, A., Mazeika, D., Bisikirskiene, L., Strolia, Z.: “MBSE grid: a simplified sysml-based approach for modeling complex systems. In: INCOSE International Symposium, vol. 27, no. 1, pp. 136–150 (2017)

  11. Mhenni, F., Choley, J.-Y., Penas, O., Plateaux, R., Hammadi, M.: A SysML-based methodology for mechatronic systems architectural design. Adv. Eng. Inform. 28(3), 218–231 (2014)

    Article  Google Scholar 

  12. Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and Embedded Systems with UML and MARTE: Developing Cyber-Physical Systems, 1st edn. Morgan Kaufmann Publishers Inc., San Francisco (2013)

    Google Scholar 

  13. Debruyne, V., Simonot-Lion, F., Trinquet, Y.: East-adl—an architecture description language—validation and verification aspects. In: IFIP World Computer Congress, TC 2, vol. 01, pp. 181–195 . Springer(2004)

  14. Fürst, S., Mössinger, J., Bunzel, S., Weber, T., Kirschke-Biller, F., Heitkämper, P., Kinkelin, G., Nishikawa, K., Lange, K.: AUTOSAR—a worldwide standard is on the road. In: 14th International VDI Congress Electronic Systems for Vehicles, vol. 62. Baden-Baden, p. 5 (2009)

  15. Kress, A., Eberhardt, M., Donig, J.: A requirements engineering approach to accelerate innovation in automotive electronics. In: AmE 2017-Automotive Meets Electronics; 8th GMM-Symposium. VDE 1–6 (2017)

  16. Novacek, J., Ahari, A., Cornaglia, A., Haxel, F., Viehl, A., Bringmann, O., Rosenstiel, W.: Ontology-supported design parameter management for change impact analysis. In: 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). IEEE, pp. 9–16 (2018)

  17. Lehndorff, T., Alsioufy, A., Hirler, A., Sulima, T., Lochner, H., Hansch, W.: autoSWIFT: validation of new automotive requirements via systematic rating of semiconductor technologies. In: AmE 2017-Automotive meets Electronics; 8th GMM-Symposium. VDE 1–6 (2017)

  18. Gleirscher, M., Vogelsang, A., Fuhrmann, S.: A model-based approach to innovation management of automotive control systems. In: 2014 IEEE 8th International Workshop on Software Product Management (IWSPM), pp. 1–10 (2014)

  19. Meyer, J.: Eine durchgängige modellbasierte Entwicklungsmethodik für die automobile Steuergeräteentwicklung unter Einbeziehung des AUTOSAR Standards, Ph.D. dissertation, Universität Paderborn, Juli (2014)

  20. Piques, J.-D., Andrianarison, E.: SysML for embedded automotive systems: lessons learned. In: Embedded Real Time Software and Systems (ERTS)

  21. Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.-B., Reinkemeier, P., Sangiovanni-Vincentelli, A., Damm, W., Henzinger, T. A., Larsen, K. G.: Contracts for system design. In: Foundations and Trends\(\bigcirc \!\!\!\!\!{\rm R}\) in Electronic Design Automation, vol. 12, no. 2–3, pp. 124–400. https://doi.org/10.1561/1000000053

  22. “TIMMO - Timing Model,” ITEA, International Project. [Online]. https://itea3.org/project/timmo.html

  23. “AUTOSAR plattform standards,” International Organization. https://www.autosar.org/

  24. “Cameo systems modeler,” Company: No Magic. https://www.nomagic.com/products/cameo-systems-modeler

  25. Broy, M., Gleirscher, M., Merenda, S., Wild, D., Kluge, P., Krenzer, W.: Toward a holistic and standardized automotive architecture description. Computer 42(12), 98–101 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank our GENIAL! project partners, especially Alexander Breckel, Alexander Jung and Konstantin Lübeck for contributing their ideas to the possible collaboration forms as well as company Hella and Infineon Technologies AG for their feedback during the initial evaluation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maher Fakih.

Additional information

Communicated by Juergen Dingel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been supported by the GENIAL! project which is funded by the German Federal Ministry of Education and Research (BMBF) under the funding code 16ES0865-16ES0876 in the ICT 2020 funding programme.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakih, M., Klemp, O., Puch, S. et al. A modeling methodology for collaborative evaluation of future automotive innovations. Softw Syst Model 20, 1587–1608 (2021). https://doi.org/10.1007/s10270-021-00864-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10270-021-00864-3

Keywords

Navigation