Skip to main content
Log in

Study of Various Approximations Used in Modeling Radiative Heat Transfer Problems

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The aim of this work is to study and compare various approximations for the system of radiative heat transfer equations (TEs) in optically dense and transparent media. For this purpose, in optically dense media, asymptotic analysis is used; and in optically transparent media, an approach that allows reducing the solution of diffusion equations to solve a kinetic equation. The performed studies enable us to conclude that in optically dense media the solutions in the considered approximations tend to the solution of the kinetic equation with increasing optical thickness. This follows from the asymptotic analysis. In optically transparent media, coincidence with the solution of the kinetic equation is only possible in the quasi-transfer and quasi-diffusion approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. G. I. Bell and S. Glasstone, Nuclear Reactor Theory (Van Nostrand Reinhold Co., New York, 1970; Atomizdat, Moscow, 1974).

  2. V. V. Smelov, Lectures on Neutron Transport Theory (Atomizdat, Moscow, 1978) [in Russian].

    Google Scholar 

  3. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002).

  4. A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1966; Dover, New York, 1990).

  5. R. G. McClarren, J. P. Holloway, and T. A. Brunner, “On solution to the P n equations for thermal radiative transfer,” J. Comput. Phys. 227 (5), 2864–2885 (2008).

    Article  MathSciNet  Google Scholar 

  6. P. S. Brantley and E. W. Larsen, “The simplified P 3 approximation,” Nucl. Sci. Eng. 134 (1), 1–21 (2000).

    Article  Google Scholar 

  7. A. V. Alekseev, I. M. Belyakov, A. I. Bochkov et al., “SATURN-2005 CODE. Mathematical models, algorithms and programs for multidimensional particle and energy transport problems,” Vopr. At. Nauki Tekh., No. 4, 17–30 (2013).

  8. A. V. Babanov, S. A. Bel’kov, S. V. Bondarenko et al., “MIMOZA-ND3D technique. Simulation of radiation spectrum transfer in 3D,” Vopr. At. Nauki Tekh., No. 2, 64–72 (2012).

  9. V. Yu. Gusev, M. Yu. Kozmanov, and E. B. Rachilov, “A method of solving implicit difference equations approximating systems of radiation transport and diffusion equations,” USSR Comp. Math. Math. Phys. 24 (6), 156–161 (1984).

    Article  Google Scholar 

  10. A. D. Gadzhiev and A. A. Shestakov, “The “Romb” method for solution of multigroup radiation transfer equation in P 1-approximation,” Vopr. At. Nauki Tekh., No. 3, 66–70 (1989).

  11. V. Ya. Gol’din, “A quasi-diffusion method of solving the kinetic equation,” USSR Comp. Math. Math. Phys. 4 (6), 136–149 (1964).

    Article  MathSciNet  Google Scholar 

  12. W. A. Wieselquist, D. Y. Anistratov, and J. E. Morel, “A cell-local finite difference discretization of the low-order quasidiffusion equations for neutral particle transport on unstructured quadrilateral meshes,” J. Comput. Phys. 273, 343–357 (2014).

    Article  MathSciNet  Google Scholar 

  13. E. N. Aristova, “Simulation of radiation transport in a channel based on the quasi-diffusion method,” Transp. Theory Stat. Phys. 37 (5–7), 483–503 (2008).

    Article  MathSciNet  Google Scholar 

  14. L. Chacón, G. Chen, D. A. Knoll, C. Newman, H. Park et al., “Multiscale high-order/low-order (HOLO) algorithms and applications,” J. Comput. Phys. 330, 21–45 (2017).

    Article  MathSciNet  Google Scholar 

  15. N. G. Karlykhanov and M. Yu. Kozmanov, “Accounting for transport effects in radiation transport simulations in the diffusion approximation,” Vopr. At. Nauki Tekh., No. 4, 3–9 (2010).

  16. D. A. Koshutin and A. A. Shestakov, “Solving the 2D thermal radiation transport equation in the multigroup quasi-transport approximation,” Vopr. At. Nauki Tekh., No. 3, 39–50 (2017).

  17. D. A. Koshutin and A. A. Shestakov, “An approximate method for solving the heat radiation transfer equation,” in Book of Abstracts, XVII International WorkshopSupercomputing and Mathematical Modeling,” Sarov, Russia, October 15–19, 2018, p. 73 [in Russian].

  18. A. A. Shestakov, “Unconditionally stable difference schemes for radiant energy transport in two diffusion and P 1-approximations,” Vopr. At. Nauki Tekh., No. 3, 47–53 (1993).

  19. A. D. Gadzhiev and A. A. Shestakov, “The Rhomb method for numerically solving the 2D radiation transport equation in multigroup P 1-approximation,” Vopr. At. Nauki Tekh., No. 1, 41–47 (1990).

  20. A. V. Urakova, I. S. Chubareshko, and A. A. Shestakov, “Solution of the system of thermal radiation transport equations in different approximations,” in Book of Abstracts, XVII International WorkshopSupercomputing and Mathematical Modeling,” Sarov, Russia, October 15–19, 2018, p. 75 [in Russian].

  21. A. D. Gadzhiev, A. A. Shestakov, V. N. Seleznev, and E. M. Romanova, “TOM4-KD technique for computational simulating 2D equations of radiation transfer in multi-group quasi-diffusive approximation,” Vopr. At. Nauki Tekh., No. 4, 48–59 (2001).

  22. A. D. Gadzhiev, S. A. Grabovenskaya, V. V. Zavyalov, and A. A. Shestakov, “Application of the TVD-approach to solve the thermal radiation transport equation with quasidiffusion method,” Vopr. At. Nauki Tekh., No. 3, 3–14 (2010).

  23. S. A. Grabovenskaya and A. A. Shestakov, “Analysis of some schemes for solving radiation transport equations using the quasi-diffusion method,” Vopr. At. Nauki Tekh., No. 4, 3–15 (2011).

  24. S. A. Grabovenskaja, V. V. Zavyalov, and A. A. Shestakov, “Finite-difference scheme GROM for the 2D quasi-diffusive system of thermal radiation transport equations,” Vopr. At. Nauki Tekh., No. 3, 47–58 (2014).

  25. G. I. Marchuk and V. I. Lebedev, Numerical Methods in the Theory of Neutron Transport (Atomizdat, Moscow, 1981; Harwood Academic Publ., Chur, 1986).

  26. E. W. Larsen, “Unconditionally stable diffusion acceleration of the transport equation,” Transp. Theory Stat. Phys. 11 (1), 29–52 (1982).

    Article  MathSciNet  Google Scholar 

  27. A. D. Gadzhiev, I. A. Kondakov, and A. A. Shestakov, “Iteration acceleration RDSA-method for solving one-dimensional neutron transport equation,” Vopr. At. Nauki Tekh., No. 2, 3–19 (2007).

  28. A. D. Gadzhiev, D. A. Koshutin, and A. A. Shestakov, “The method of discrete ordinates with TVD-reconstruction and a synthetic method of iteration acceleration for the numerical solution of the heat transport equation,” Vopr. At. Nauki Tekh., No. 3, 3–15 (2013).

  29. A. D. Gadzhiev, D. A. Koshutin, and A. A. Shestakov, “DSn-method with TVD reconstruction and synthetic P 1SA iteration acceleration for numerical solution of the two-dimensional thermal radiation transport equation in the axially symmetric RZ-geometry,” Vopr. At. Nauki Tekh., No. 4, 3–19 (2016).

  30. M. L. Adams and E. W. Larsen, “Fast iterative methods for discrete-ordinates particle transport calculations,” Prog. Nucl. Energy 40 (1), 3–159 (2002).

    Article  Google Scholar 

  31. M. N. Ozisik, Radiative Transfer and Interactions with Conduction and Convection (Wiley, New York, 1973); Complex Heat Transfer (Mir, Moscow, 1976) [Russian translation].

  32. E. W. Larsen, G. C. Pomraning, and V. C. Badham, “Asymptotic analysis of radiative transfer problems,” J. Quant. Spectrosc. Radiat. Transfer 29 (4), 285–310 (1983).

    Article  Google Scholar 

  33. R. McClarren, J. P. Holloway, and T. Brunner, “Establishing an asymptotic diffusion limit for Riemann solvers on the time-dependent P n equations,” in Proc. International Topical Meeting on Mathematics and Computation, Supercomputing, Reactor Physics and Nuclear and Biological Applications (M&C 2005), Avignon, France, September 12–15, 2005, 14 p.

  34. A. A. Shestakov, “About diffusion properties of the Romb scheme for P 1-equations,” Vopr. At. Nauki Tekh., No. 2, 56–62 (2011).

  35. N.-Z. Cho, G. S. Lee, and C. J. Park, “Partial current-based CMFD acceleration of the 2D/1D fusion method for 3D whole-core transport calculations,” Trans. Am. Nucl. Soc. 88, p. 594 (2003).

    Google Scholar 

  36. A. A. Shestakov, “Investigation of the onset of oscillations in solving the one-dimensional migration equation,” Preprint No. 100 (RFYaTs–VNIITF, Snezhinsk, 1996) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shestakov.

Additional information

Translated by I. Pertsovskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shestakov, A.A. Study of Various Approximations Used in Modeling Radiative Heat Transfer Problems. Math Models Comput Simul 13, 231–243 (2021). https://doi.org/10.1134/S2070048221020137

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048221020137

Keywords:

Navigation