Skip to main content
Log in

Modeling Vibrations of Nanoporous Microcantilevers from Anodic Aluminum Oxide for Biochemical Sensors

  • Published:
Mathematical Models and Computer Simulations Aims and scope

Abstract

The results of a study of the oscillations of microcantilevers (MCs) made of nanoporous anodic aluminum oxide and constituting the base of biochemical sensors are described. Finite-element modeling of an MC’s vibrations reveal the sources of resonances in the frequency spectrum that do not correspond to the cantilever’s oscillations and complicate the development of sensors. It is shown for the first time that such sources are resonances of vibrations of the base of the MC on the elastic layer of the compound used to attach the base to the substrate. Approximate relationships between the parameters of the MC, base, and compound layer are obtained, which ensure that only the working modes of MC vibrations are present in the spectrum. To ensure a clean spectrum, one of two conditions must be observed or a combination of both: a sufficiently rigid MC attachment to the substrate and a sufficiently small base size. Ensuring a clean spectrum is achieved regardless of the rigidity of the MC’s fastening as long as the base length does not exceed 0.6, 0.43, and 0.33 MC lengths, respectively, for the 3rd, 4th, and 5th harmonics of the MC’s working mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. E. Peiner and H. S. Wasisto, “Cantilever Sensors,” Sens. 19 (9), 2043 (2019). https://doi.org/10.3390/s19092043

    Article  Google Scholar 

  2. L. Schlur, J. R. Calado, and D. Spitzer, “Synthesis of zinc oxide nanorods or nanotubes on one side of a microcantilever,” R. Soc. Open Sci. 5 (8), 180510 (2018). https://doi.org/10.1098/rsos.180510

    Article  Google Scholar 

  3. B. N. Johnson and R. Mutharasan, “Biosensing using dynamic-mode cantilever sensors: A review,” Biosens. Bioelectron. 32 (1), 1–18 (2012). https://doi.org/10.1016/j.bios.2011.10.054

    Article  Google Scholar 

  4. I. Pellejero, J. Agustí, M. A. Urbiztondo, J. Sesé et al., “Nanoporous silicalite-only cantilevers as micromechanical sensors: Fabrication, resonance response and VOCs sensing performance,” Sens. Actuators: B Chem. 168, 74–82 (2012). https://doi.org/10.1016/j.snb.2012.01.041

    Article  Google Scholar 

  5. S. Kim, K. D. Kihm, and T. Thundat, “Fluidic applications for atomic force microscopy (AFM) with microcantilever sensors,” Exp. Fluids 48 (5), 721–736 (2010). https://doi.org/10.1007/s00348-010-0830-3

    Article  Google Scholar 

  6. I. S. Amiri and S. Addanki, “Simulation fabrication and characterization of micro-cantilever array based ozone sensor,” Results Phys. 10, 923–933 (2018). https://doi.org/10.1016/j.rinp.2018.08.010

    Article  Google Scholar 

  7. R. Agarwal, R. Mukhiya, R. Sharma et al., “Finite element method-based design and simulations of micro-cantilever platform for chemical and bio-sensing applications,” Def. Sci. J. 66 (5), 485–488 (2016). https://doi.org/10.14429/dsj.66.10702

    Article  Google Scholar 

  8. N. Siddaiah, D. V. R. K. Reddy, Y. B. Sankar et al., “Modeling and simulation of Triple coupled cantilever sensor for mass sensing applications,” Int. J. Electr. Comput. Eng. (IJECE) 5 (3), 403–408 (2015). https://doi.org/10.11591/ijece.v5i3

    Article  Google Scholar 

  9. R. Datar, S. Kim, S. Jeon et al., “Cantilever sensors: Nanomechanical tools for diagnostics,” MRS Bull. 34 (6), 449–454 (2009). https://doi.org/10.1557/mrs2009.121

    Article  Google Scholar 

  10. V. Chivukula, M. Wang, H.-F. Ji, A. Khaliq, J. Fang, and K. Varahramyan, “Simulation of SiO2-based piezoresistive microcantilevers,” Sens. Actuators A: Phys. 125 (2), 526–533 (2006). https://doi.org/10.1016/j.sna.2005.08.038

    Article  Google Scholar 

  11. P.−S. Lee, J. Lee, N. Shin et al., “Microcantilevers with nanochannels,” Adv. Mater. 20 (9), 1732–1737 (2008). https://doi.org/10.1002/adma.200701490

    Article  Google Scholar 

  12. O. Boytsova, A. Klimenko, V. Lebedev et al., “Nanomechanical humidity detection through porous alumina cantilevers,” Beilstein J. Nanotechnol. 6, 1332–1336 (2015). https://doi.org/10.3762 /bjnano.6.137

    Article  Google Scholar 

  13. V. N. Simonov, N. L. Matison, O. V. Boytsova, and O. K. Krasil’nikova, “Computer simulation of nanoporous alumina microcantilevers and the study of the influence of porosity on the elastic moduli of oxide,” Nanotechnol. Russia 10 (5–6), 428–433 (2015). https://doi.org/10.1134/S1995078015030167

    Article  Google Scholar 

  14. G. Simmons and H. Wang, Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook (MIT Press, Cambridge, MA, 1971).

    Google Scholar 

  15. V. N. Simonov, L. P. Loshmanov, and E. B. Markova, “Composite model of the dependence of mechanical properties of anodic aluminum oxide on porosity,” Inorg. Mater. Appl. Res. 8 (5), 813–815 (2017). https://doi.org/10.1134/S2075113317050288

    Article  Google Scholar 

  16. W. Martienssen and H. Warlimont (Eds.), Springer Handbook of Condensed Matter and Materials Data (Springer, Berlin, Heidelberg, 2005).

    Google Scholar 

  17. I. V. Andrianov, V. V. Danishevskii, and A. O. Ivankov, Asymptotic Methods in the Theory of Vibrations of Beams and Plates (Pridnepr. Gos. Akad. Stroit. Arkhit., Dnepropetrovsk, 2010) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Simonov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonov, V.N., Matison, N.L., Boytsova, O.V. et al. Modeling Vibrations of Nanoporous Microcantilevers from Anodic Aluminum Oxide for Biochemical Sensors. Math Models Comput Simul 13, 293–300 (2021). https://doi.org/10.1134/S2070048221020149

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070048221020149

Keywords:

Navigation