Skip to main content
Log in

Extraction of Highly Condensed Polyaromatic Components from Petroleum Asphaltenes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

The paper reports the results of the fractional extraction of petroleum asphaltenes using a toluene/acetone mixture. This method was shown to be effective in extracting polyaromatic structures with various properties and in predicting a number of their composition parameters and structural properties, such as molecular weight, condensation level, aliphaticity, the number of paramagnetic centers, and metal content. It was found that the fractional extraction from petroleum asphaltenes with a toluene/acetone (60 : 40) mixture produces 47.4 wt % of polyaromatic structures with increased condensation level. Such asphaltene structures can be considered as graphene precursors and can be used for the preparation of various carbon materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Mullins, O.C., Annu. Rev. Anal. Chem., 2011, vol. 4, pp. 393–418. https://doi.org/10.1146/annurev-anchem-061010-113849

    Article  CAS  Google Scholar 

  2. Adams, J.J., Energy Fuels, 2014, vol. 28, no. 5, pp. 2831–2856. https://doi.org/10.1021/ef500282p

    Article  CAS  Google Scholar 

  3. Yakubov, M.R., Sinyashin, K.O., Abilova, G.R., Tazeeva, E.G., Milordov, D.V., Yakubova, S.G., Borisov, D.N., Gryaznov, P.I., Mironov, N.A., and Borisova, Yu.Yu., Petrol. Chem., 2017, vol. 57, no. 10, pp. 849–854. https://doi.org/10.1134/S096554411710019X

    Article  CAS  Google Scholar 

  4. Zuo, P., Qu, S., and Shen, W., J. Energy Chem., 2019, vol. 34, pp. 186–207. https://doi.org/10.1016/j.jechem.2018.10.004

    Article  Google Scholar 

  5. Ganeeva, Yu.M., Yusupova, T.N., and Romanov, G.V., Russ. Chem. Rev., 2011, vol. 80, no. 10, pp. 993–1008. https://doi.org/10.1070/RC2011v080n10ABEH004174

    Article  CAS  Google Scholar 

  6. Schuler, B., Zhang, Y., Liu, F., Pomerantz, A.E., Andrews, A.B., Gross, L., and Mullins, O.C., Energy Fuels, 2020, vol. 34, no. 12, pp. 15082–15105. https://doi.org/10.1021/acs.energyfuels.0c00874

    Article  CAS  Google Scholar 

  7. Pokonova, Yu.P., Khimiya vysokomolekulyarnykh soedinenii nefti (Macromolecular Chemistry of Oil Compounds), Leningrad: Leningrad. Gos. Univ., 1980.

  8. Yakubov, M.R., Gryaznov, P.I., Yakubova, S.G., Tazeeva, E.G., Mironov, N.A., and Milordov, D.V., Petrol. Sci. Technol., 2016, vol. 34, no. 22, pp. 1805–1811. https://doi.org/10.1080/10916466.2016.1230751

    Article  CAS  Google Scholar 

  9. Yakubov, M.R., Gryaznov, P.I., Yakubova, S.G., Sinyashin, K.O., Milordov, D.V., and Mironov, N.A., Petrol. Sci. Technol., 2017, vol. 35, no. 22, pp. 2152–2157. https://doi.org/10.1080/10916466.2017.1387564

    Article  CAS  Google Scholar 

  10. Borisova, Y.Y., Minzagirova, A.M., Gilmanova, A.R., Galikhanov, M.F., Borisov, D.N., and Yakubov, M.R., C. E. J., 2019, vol. 5, no. 12, pp. 2554–2568. https://doi.org/10.28991/cej-2019-03091432

    Article  Google Scholar 

  11. Chen, F., Zhu, Q., Li, S., Xu, Z., Sun, X., and Zhao, S., Fuel Process. Technol., 2018, vol. 174, pp. 132–141. https://doi.org/10.1016/j.fuproc.2018.02.021

    Article  CAS  Google Scholar 

  12. Atta, A.M., Abdullah, M., Al-Lohedan, H.A., and Mohamed, N.H., Nanomaterials, 2019, vol. 9, no. 2, pp. 187–190. https://doi.org/10.3390/nano9020187

    Article  CAS  PubMed Central  Google Scholar 

  13. Ignatenko, V.Y., Kostina, Y.V., Antonov, S.V., and Ilyin, S.O., Russ. J. Appl. Chem., 2018, vol. 91, no. 11, pp. 1835–1840. https://doi.org/10.1134/S1070427218110149

    Article  CAS  Google Scholar 

  14. Danumah, C., Myles, A.J., and Fenniri, H., MRS Online Proc. Library Archive, 2011, vol. 1312, pp. 473–479. https://doi.org/10.1557/opl.2011.1186

    Article  Google Scholar 

  15. Rabeea, M.A., Zaidan, T.A., Ayfan, A.H., and Younis, A.A., Carbon Lett., 2020, vol. 30, no. 2, pp. 199–205. https://doi.org/10.1007/s42823-019-00086-0

    Article  Google Scholar 

  16. Han, Z., Kong, S., Cheng, J., Sui, H., Li, X., Zhang, Z., and He, L., Ind. Eng. Chem. Res., 2019, vol. 58, no. 32, pp. 14785–14794. https://doi.org/10.1021/acs.iecr.9b02143

    Article  CAS  Google Scholar 

  17. Qin, F., Jiang, W., Ni, G., Wang, J., Zuo, P., Qu, S., and Shen, W., ACS Sustain. Chem. Eng., 2019, vol. 7, no. 4, pp. 4523–4531. https://doi.org/10.1021/acssuschemeng.9b00003

    Article  CAS  Google Scholar 

  18. Natarajan, A., Mahavadi, S.C., Natarajan, T.S., Masliyah, J.H., and Xu, Z., J. Eng. Fiber. Fabr., 2011, vol. 6, no. 2, pp. 1–6. https://doi.org/10.1177/155892501100600201

    Article  CAS  Google Scholar 

  19. Wang, X., Guo, J., Xu, B., and Yang, X., Mater. Chem. Phys., 2009, vol. 113, nos. 2–3, pp. 821–823. https://doi.org/10.1016/j.matchemphys.2008.08.053

    Article  CAS  Google Scholar 

  20. Li, Y., Chen, Q., Xu, K., Kaneko, T., and Hatakeyama, R., Chem. Еng. J., 2013, vol. 215, pp. 45–49. https://doi.org/10.1016/j.cej.2012.09.123

    Article  CAS  Google Scholar 

  21. Xu, C., Ning, G., Zhu, X., Wang, G., Liu, X., Gao, J., and Wei, F., Carbon, 2013, vol. 62, pp. 213–221. https://doi.org/10.1016/j.carbon.2013.05.059

    Article  CAS  Google Scholar 

  22. Musin, L.I., Foss, L.E., Shabalin, K.V., Nagornova, O.A., Borisova, Y.Y., Borisov, D.N., and Yakubov, M.R., Energy Fuels, 2020, vol. 34, pp. 6523–6543. https://doi.org/10.1021/acs.energyfuels.9b03283

    Article  CAS  Google Scholar 

  23. Buenrostro-Gonzalez, E., Andersen, S.I., GarciaMartinez, J.A., and Lira-Galeana, S., Energy Fuels, 2002, vol. 16, pp. 732–741. https://doi.org/10.1021/ef0102317

    Article  CAS  Google Scholar 

  24. Morantes, L.R., Percebom, A.M., and Mejia-Ospino, E., Fuel, 2019, vol. 241, pp. 542–549. https://doi.org/10.1016/j.fuel.2018.12.028

    Article  CAS  Google Scholar 

  25. Zheng, C., Zhu, M., Zareie, R., and Zhang, D., J. Petrol. Sci. Eng., 2018, vol. 168, pp. 148–155. https://doi.org/10.1016/j.petrol.2018.05.002

    Article  CAS  Google Scholar 

  26. Carvalho, V.V., Vasconcelos, G.A., Tose, L.V., Santos, H., Cardoso, F., Fleming, F., Romao, W., and Vaz, B.G., Fuel, 2017, vol. 210, pp. 514–526. https://doi.org/10.1016/j.fuel.2017.08.098

    Article  CAS  Google Scholar 

  27. Daaou, M., Bendedouch, D., Modarressi, A., and Rogalski, M., Energy Fuels, 2012, vol. 26, pp. 5672–5678. https://doi.org/10.1021/ef300573d

    Article  CAS  Google Scholar 

  28. Daaou, M., Modarressi, A., Bendedouch, D., Bouhadda, Y., Krier, G., and Rogalski, M., Energy Fuels, 2008, vol. 22, pp. 3134–3142. https://doi.org/10.1021/ef800078u

    Article  CAS  Google Scholar 

  29. Zhang, J., Tian, Y., Qiao, Y., Yang, C., and Shan, H., Energy Fuels, 2017, vol. 31, no. 8, pp. 8072–8086. https://doi.org/10.1021/acs.energyfuels.7b01327

    Article  CAS  Google Scholar 

  30. Liang, W., Que, G.H., and Chen, Y., Acta Pet. Sin. (Pet. Process. Sect.), 1991, vol. 7, no. 4, pp. 1–11.

    Google Scholar 

  31. Palacio, D.C., Orrego-Ruiz, J.A., Barrow, M.P., Cabanzo, R., and Mejía-Ospino, E., Fuel, 2016, vol. 171, pp. 247–252. https://doi.org/10.1016/j.fuel.2015.12.058

    Article  CAS  Google Scholar 

  32. Martyanov, O.N., Larichev, Y.V., Morozov, E.V., Trukhan, S.N., and Kazarian, S.G., Russ. Chem. Rev., 2017, vol. 86, no. 11, pp. 999–1023. https://doi.org/10.1070/RCR4742

    Article  CAS  Google Scholar 

  33. Trukhan, S.N., Kazarian, S.G., and Martyanov, O.N., Energy Fuels, 2017, vol. 31, no. 1, pp. 387–394. https://doi.org/10.1021/acs.energyfuels.6b02572

    Article  CAS  Google Scholar 

  34. Gal’tsev, V.E., Grinberg, O.Y., Ratov, A.N., Nemirovskaya, G.B., and Emel’anova, A.S., Petrol. Chem., 1995, vol. 35, no. 1, pp. 35–39.

    Google Scholar 

  35. Mamin, G.V., Gafurov, M.R., Yusupov, R.V., Gracheva, I.N., Ganeeva, Y.M., Yusupova, T.N., and Orlinskii, S.B., Energy Fuels, 2016, vol. 30, pp. 6942–6946. https://doi.org/10.1021/acs.energyfuels.6b00983

    Article  CAS  Google Scholar 

  36. Yakubov, M.R., Abilova, G.R., Sinyashin, K.O., Milordov, D.V., Tazeeva, E.G., Yakubova, S.G., and Borisova, Y.Y., Phthalocyan. Some Curr. Appl., 2017, pp. 153–168. https://doi.org/10.5772/intechopen.68436

Download references

ACKNOWLEDGMENTS

The authors are grateful to the researchers of the Multiple-Access Spectro-Analytical Center for Physical-Chemical Study of Structure, Properties and Composition of Substances and Materials, KazSC RAS, for their kind cooperation in the examinations conducted for the study.

Funding

The study described here was performed with financial support from the Russian Science Foundation (RSF grant no. 19-13-00178).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Yu. Borisova.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Additional information

Translated from Neftekhimiya, 2021, Vol. 61, No. 3, pp. 311–318 https://doi.org/10.31857/S0028242121030023.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borisova, Y.Y., Musin, L.I., Borisov, D.N. et al. Extraction of Highly Condensed Polyaromatic Components from Petroleum Asphaltenes. Pet. Chem. 61, 424–430 (2021). https://doi.org/10.1134/S0965544121050029

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544121050029

Keywords:

Navigation