Skip to main content
Log in

Ambient Noise Tomography with Short-Period Stations: Case Study in the Borborema Province

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The analysis of seismic ambient noise has been recently proven a viable alternative to the analysis of seismic waves generated by earthquakes. Although seismic ambient noise had traditionally been discarded from earthquake records, it has now been shown that the cross-correlation of the seismic ambient noise allows for the recovery of the Green’s function between the receivers. Furthermore, seismic noise has the ability to propagate continuously and independently of the occurrence of earthquakes, allowing for high-resolution tomographic studies in regions of low seismicity. Over the last two decades, the cross-correlation of continuous seismic noise recordings between pairs of stations has been widely utilized in surface-wave tomography studies. For the Northeast Brazil region, tomographic studies have been exclusively performed with seismic data from broadband stations; however, in addition to those stations, there exists a large volume of short-period data that might potentially improve the resolution of existing ambient noise tomographies. Thus, the goal of this work is to utilize, in addition to broadband data, short-period data recorded by 22 short-period stations in the Borborema Province. Through cross-correlation and stacking of ambient seismic noise, the emergence of the fundamental mode of the Rayleigh waves and their dispersive character was observed. Once the empirical Green's functions were retrieved, the accuracy of (phase and group) dispersion curves for periods up to 10 s and its tomographic inversion were assessed. Our results demonstrate that short-period dispersion measurements can be successfully integrated in regional tomographic studies for improved resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bensen, G. D., Ritzwoller, M. H., Barmin, M. P., Levshin, A. L., Lin, F., Moschetti, M. P., Shapiro, N. M., & Yang, Y. (2007). Processing seismic ambient data to obtain reliable broad-band surface-wave dispersion measurements. Geophysical Journal International, 169, 1239–1260.

    Article  Google Scholar 

  • Bensen, G. D., Ritzwoller, M. H., & Shapiro, N. M. (2008). Broadband ambient noise surface wave tomography across the United States. Journal of Geophysical Research, 113(B5), B05306. https://doi.org/10.1029/2007JB005248.

    Article  Google Scholar 

  • Bromirski, P. D. (2001). Vibrations from the ‘‘Perfect Storm”. Geochemistry Geophysics Geosystems. https://doi.org/10.1029/2000GC000119.

    Article  Google Scholar 

  • Bromirski, P., & Duennebier, F. (2002). The near-coastal microseism spectrum: spatial and temporal wave climate relationships. Journal of Geophysical Research. https://doi.org/10.1029/2001JB000265.

    Article  Google Scholar 

  • Campillo, M., & Paul, A. (2003). Long-range correlations in the diffuse seismic coda. Science, 299, 547–549.

    Article  Google Scholar 

  • Dias, R. C., Júlia, J., & Schimmel, M. (2014). Rayleigh-wave, group-velocity tomography of the Borborema Province, NE Brazil, from ambient seismic noise. Pure Applied Geophysics. https://doi.org/10.1007/s00024-014-0982-9.

    Article  Google Scholar 

  • Ekström, G., Abers, G. A., & Webb, S. C. (2009). Determination of surface wave phase velocities across USArray from noise and Aki’s spectral formulation. Geophysical Research Letters, 36, L18301. https://doi.org/10.1029/2009GL039131.

    Article  Google Scholar 

  • Friedrich, A., Krüger, F., & Klinge, K. (1998). Ocean generated microseismic noise located with the Gräfenberg array. Journal of Seismology, 2, 47–64.

    Article  Google Scholar 

  • Herrin, E., & Goforth, T. (1977). Phase-matched filters: application to the study of Rayleigh waves. Bulletin of the Seismological Society of America, 67, 1259–1275.

    Google Scholar 

  • Kennett, B. L. N., Sambridge, M. S., & Williamson, P. R. (1988). Subspace methods for large scale inverse problems involving multiple parameter classes. Geophysical Journal, 94, 237–247.

    Article  Google Scholar 

  • LaCoss, R. T., Kelly, E. J., & Toksoz, M. N. (1969). Estimation of seismic noise using arrays. Geophysics, 34, 21–38.

    Article  Google Scholar 

  • Larose, E., Derode, A., Campillo, M., & Fink, M. (2004). Imaging from onebit correlations of wide-band diffuse wavefields. Journal of Applied Physics, 95(12), 8393–8399.

    Article  Google Scholar 

  • Levshin, A. L., & Ritzwoller, M. H. (2001). Automated detection, extraction, and measurement of regional surface waves. Pure and Applied Geophysics, 158, 1531–1545.

    Article  Google Scholar 

  • Levshin, A. L., Pisarenko, V. F., & Pogrebinsky, G. A. (1992). On a frequency-time analysis of oscillations. Annales Geophysicae, 28, 211–218.

    Google Scholar 

  • Lin, F., Moschetti, M. P., & Ritzwoller, M. H. (2008). Surface wave tomography of the western United States from ambient seismic noise: Rayleigh and Love wave phase velocity maps. Geophysical Journal International, 173, 281–298. https://doi.org/10.1111/j1365-246X.2008.03720.x.

    Article  Google Scholar 

  • Lobkis, O. I., & Weaver, R. L. (2001). On the emergence of the Green‘s function in the correlations of a diffuse field. Journal of the Acoustical Society of America, 110, 3011–3017.

    Article  Google Scholar 

  • Mottaghi, A. A., Rezapour, M., & Korn, M. (2013). Ambient noise surface wave tomography of the Iranian Plateau. Geophysical Journal International, 193, 452–462. https://doi.org/10.1093/gji/ggs134.

    Article  Google Scholar 

  • Poveda, E., Julià, J., Schimmel, M., & Perez-Garcia, N. (2018). Upper and middle crustal velocity structure of the Colombian Andes from ambient noise tomography: investigating subduction-related magmatism in the overriding plate. Journal of Geophysical Research-Solid Earth, 123, 1459–1485.

    Article  Google Scholar 

  • Rawlinson, N. (2005). FMST: Fast Marching Surface Tomography package. (p. 0200). Australian National University, Canberra ACT.

    Google Scholar 

  • Rawlinson, N., & Sambridge, M. (2005). The fast marching method: an effective tool for tomographic imaging and tracking multiple phases in complex layered media. Expl. Geophys., 36, 341–350.

    Article  Google Scholar 

  • Sabra, K. G., Gerstoft, P., Roux, P., Kuperman, W. A., & Fehler, M. C. (2005). Surface wave tomography from microseism in southern California. Geophysical Research Letters, 32, L14311. https://doi.org/10.1029/2005GL023155.

    Article  Google Scholar 

  • Schimmel, M., & Paulssen, H. (1997). Noise reduction and detection of weak, coherent signals through phase weighted stacks. Geophysical Journal International, 130, 497–505. https://doi.org/10.1111/j.1365-246X.1997.tb05664.x.

    Article  Google Scholar 

  • Schimmel, M., Stutzmann, E., & Gallart, J. (2011). Using instantaneous phase coherence for signal extraction from ambient noise data at a local to a global scale. Geophysical Journal International, 184, 494–506. https://doi.org/10.1111/j.1365-246X.2010.04861.x.

    Article  Google Scholar 

  • Sethian, J. A. (1996). A fast marching level set method for monotonically advancing fronts. Proceedings of the National Academy of Science, 93, 1591–1595.

    Article  Google Scholar 

  • Sethian, J. A., & Popovici, A. M. (1999). 3-D traveltime computation using the fast marching method. Geophysics, 64, 516–523.

    Article  Google Scholar 

  • Shapiro, N., & Campillo, M. (2004). Emergence of broadband Rayleigh waves from correlations of the ambient seismic noise. Geophysical Research Letters, 31, L07614. https://doi.org/10.1029/2004GL019491.

    Article  Google Scholar 

  • Shapiro, N. M., Campillo, M., Stehly, L., & Ritzwoller, M. H. (2005). High-resolution surface-wave tomography from ambient seismic noise. Science, 307, 1615–1618.

    Article  Google Scholar 

  • Snieder, R. (2004). Extracting the Green‘s function from the correlation of coda waves: a derivation based on stationary phase. Physical Review E, 69, 046610. https://doi.org/10.1103/PhysRevE.69.046610.

    Article  Google Scholar 

  • Stockwell, R. G., Mansinha, L., & Lowe, R. P. (1996). Localization of the complex spectrum: the S transform. IEEE Transactions on Signal Processing, 44(4), 998–1001.

    Article  Google Scholar 

  • Villaseñor, A., Yang, Y., Ritzwoller, M. H., & Gallart, J. (2007). Ambient noise surface-wave tomography of the Iberian Peninsula: implications for shallow seismic structure. Geophysical Research Letters, 34, L11304. https://doi.org/10.1029/2007GL030164.

    Article  Google Scholar 

  • Wang, Y., Lin, F.-C., Schmandt, B., & Farrel, J. (2017). Ambient noise tomography across Mount St. Helens using a dense seismic array. Journal Geophysical Research Solid Earth, 122, 4492–4508. https://doi.org/10.1002/2016JB013769.

    Article  Google Scholar 

  • Young, M. K., Rawlinson, N., Arroucau, P., Reading, A. M., & Tkalcic, H. (2011). High-frequency ambient noise tomography of southeast Australia: new constraints on Tasmania’s tectonic past. Geophysical Research Letters, 35, L13313. https://doi.org/10.1029/2011GL047971.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank two anonymous reviewers for detailed proofreading of the manuscript and insightful comments that helped improve the clarity of the original manuscript. This research was supported by the National Institute of Science and Technology for Tectonic Studies (INCT-ET) of the National Center for Scientific and Technological Development (CNPq, grant number 57.3713/2008-1). CCS additionally thanks CNPq for granting a 2-year scholarship to conclude his MSC degree at UFRN. JJ also thanks CNPq for his research fellowship (CNPq, process number 308644/2019-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Julià.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, C.C., Poveda, E., da Silva Dantas, R.R. et al. Ambient Noise Tomography with Short-Period Stations: Case Study in the Borborema Province. Pure Appl. Geophys. 178, 1709–1730 (2021). https://doi.org/10.1007/s00024-021-02718-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02718-x

Keywords

Navigation