Skip to main content
Log in

Study on the optoelectronic properties of Ag, Pt, Na and Li particles adsorbed on GaAs nanowire arrays

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

In this paper, COMSOL Multiphysics software based on finite element method was used to design a GaAs nanowire array simulation model absorbed with metal nanoparticles. We studied the effects of the size, position and number of metal nanoparticles on their light absorption, and in this experiment, precious metal (Ag, Pt) and alkali metal (Na, Li) particles adsorbed on nanowires. The results show that the adsorption of metal particles is helpful to improve the light binding capacity of short wavelength nanowire arrays. With the change of the radius, position and number of particles, the nanowires absorbed by Li and Ag nanoparticles showed better light absorption characteristics. The optical trapping effect can be effectively enhanced by increasing the size of particles, the number of surrounding particles and the number of particles which distributed along the nanowire direction appropriately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Akimov, Y.A., Koh, W.S.: Design of plasmonic nanoparticles for efficient subwavelength light trapping in thin-film solar cells. Plamonics 6(1), 155–161 (2011)

    Article  Google Scholar 

  • Alemu, N., Chen, F.: Plasmon-enhanced light absorption of thin-film solar cells using hemispherical nanoparticles. Phys. Status Solidi 211(1), 213–218 (2014)

    Article  ADS  Google Scholar 

  • Aspnes, D.E., Kelso, S.M., Logan, R.A., et al.: Optical properties of AlxGa1-xAs. J. Appl. Phys. 60(2), 754–767 (1986)

    Article  ADS  Google Scholar 

  • Atwater, H., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9(3), 205–213 (2010)

    Article  ADS  Google Scholar 

  • Catchpole, K.R., Polman, A.: Plasmonic solar cells. Opt. Express 16(26), 21793–21800 (2008)

    Article  ADS  Google Scholar 

  • Deng, C., Tan, X., Jiang, L., et al.: Efficient light trapping in silicon inclined nanohole arrays for photovoltaic applications. Opt. Commun. 407, 199–203 (2018)

    Article  ADS  Google Scholar 

  • Endo, T., Yamamura, S., Nagatani, N., et al.: Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen-antibody reaction. Sci. Technol. Adv. Mater. 6(5), 491–500 (2005)

    Article  Google Scholar 

  • Fang, X., Zhao, C., Bao, H.: Radiative behaviors of crystalline silicon nanwire and nanohole arrays for photovoltaic applications. J. Quant. Spectrosc. Radiat. Transfer 133, 579–588 (2014)

    Article  ADS  Google Scholar 

  • Han, S.E., Chen, G.: Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics. Nano Lett. 10(3), 1012–1015 (2010)

    Article  ADS  Google Scholar 

  • Inagaki, T., Emerson, L.C., Arakawa, E.T., et al.: Optical properties of solid Na and Li between 0.6 and 3.8 eV. Phys. Rev. B 13(6), 2305–2313 (1976)

    Article  ADS  Google Scholar 

  • Lastras-Martinez, A.: Theoretical calculations of the minority-carrier diffusion length in high-internal-quantum-efficiency GaAs. J. Appl. Phys. 50(6), 4156–4158 (1979)

    Article  ADS  Google Scholar 

  • Li, Y., Yan, X., Wu, Y., Zhang, X., Ren, X.: Plasmon-enhanced light absorption in GaAs nanowire array solar cells. Nanoscale Res. Lett 10(1), 436 (2015)

    Article  ADS  Google Scholar 

  • Li, M., Zhaopeng, Xu., Daxue, Du., et al.: Enhanced optical response of crystalline silicon photovoltaic devices with integration of silver nanoparticles and ultrahin TiO2 dielectric layer. AIP Adv. 8(6), 065313 (2018)

    Article  ADS  Google Scholar 

  • Link, S., El-Sayed, M.A.: Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int. Rev. Phys. Chem. 19(3), 409–453 (2000)

    Article  Google Scholar 

  • Luo, L.B., Zheng, K., Ge, C., et al.: Surface Plasmon-Enhanced Nano-photodetector for Green Light Detection. Plasmonics 11(2), 619–625 (2016)

    Article  Google Scholar 

  • Mokkapati, S., Saxena, D., Tan, H., et al.: Design considerations for semiconductor nanowire-plasmonic nanoparticle coupled systems for high quantum efficiency nanowires. Small 9(23), 3964–3969 (2013)

    Article  Google Scholar 

  • Ohib, R., Arnob, S. Y., Md. Sayem Ali, et al. Metal Nanoparticle Enhanced Light Absorption in GaAs Thin-Film Solar Cell. 2016 IEEE Asia-Pacific Conference on Applied Electromagnetics(APACE), 2016, 89–93.

  • Rajan, A., Kaur, G., Paliwal, A., et al.: Plasmonic assisted enhanced photoresponse of metal nanoparticle loaded ZnO thin film ultraviolet photodetectors. J. Phys. D Appl. Phys. 47, 425102 (2014)

    Article  Google Scholar 

  • Schaadt, D., Feng, B., Yu, E.: Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles. Appl. Phys. Lett. 86(6), 063106 (2005)

    Article  ADS  Google Scholar 

  • Smith, N.V.: Optical constants of sodium and potassium from 0.5 to 4.0 ev by split-beam ellipsometry. Phys. Rev. 183(3), 634–644 (1969)

    Article  ADS  Google Scholar 

  • Spinelli, P., Hebbink, M., Waele, R., Black, L., Lenzmann, F., Polman, A.: Optical impedance matching using coupled plasmonic nanoparticle arrays. Nano Lett. 11(4), 1760–1765 (2011)

    Article  ADS  Google Scholar 

  • Werner, W.S., Glantschnig, K., Ambrosch-Draxl, C.: Optical Constants and Inelastic Electron-Scattering Data for 17 Elemental Metals. J. Phys. Chem. Ref. Data 38(4), 1013–1092 (2009)

    Article  ADS  Google Scholar 

  • Winpenny, R.E.P.: The structures and magnetic properties of complexes containing 3d- and 4f-metals. Chem. Soc. Rev. 27(6), 447–452 (1998)

    Article  Google Scholar 

  • Zhang, Y., Zi, O., Nicholas, S., et al.: Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells. Appl. Phys. Lett. 100(15), 205 (2012)

    Google Scholar 

  • Zhaopeng, X., Huichao, H., Li, X., et al.: Role of nanocone and nanohemisphere arrays in proving light trapping of thin film solar cells. Opt. Commun. 377, 104–109 (2016)

    Article  ADS  Google Scholar 

  • Zhaopeng, Xu., Huangfu, H., He, L., et al.: Light-trapping properties of the Si inclined nanowire arrays. Opt. Commun. 382, 332–336 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by Qing Lan Project of Jiangsu Province-China (Grant No.2017-AD41779) and the Six Talent Peaks Project in Jiangsu Province-China (Grant No.2015-XCL-008). Qinghua Lv of Hubei University of Technology is greatly appreciated for the help of COMSOL Multiphysics Business Package calculations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Ethics declarations

Conflict of interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work, there is no professional or other personal interest of any nature or kind in any product, service and/or company that could be construed as influencing the position presented in, or the review of, the manuscript entitled, “Study on the optoelectronic properties of Ag, Pt, Na and Li particles adsorbed on GaAs nanowire arrays”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Liu, L., Lv, Z. et al. Study on the optoelectronic properties of Ag, Pt, Na and Li particles adsorbed on GaAs nanowire arrays. Opt Quant Electron 53, 226 (2021). https://doi.org/10.1007/s11082-021-02897-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-021-02897-w

Keywords

Navigation