Skip to main content
Log in

An efficient quadrature method for vibration analysis of thin elliptical plates with continuous and discontinuous edge conditions

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Mapping an irregular domain into a square one is a common technique in analyzing problems of plates and shells with irregular shapes. For the irregular shape without four corners such as the elliptical shape, the difficulty arises that the Jacobian determinant is zero at the corner points. An efficient quadrature method is presented to analyze the transverse vibration of thin plates with an elliptical shape. To circumvent the above-mentioned difficulty, Gauss quadrature is used in numerical integration. Besides, derivative degrees of freedom are not used, and a boundary point is modeled by two nodes separated by a very small distance. Since the nodes are not coinciding with integration points, a way indirectly using the differential quadrature law is employed to derive the explicit formulas to ease the programming. A convergence study is performed. Free vibration of elliptical plates with continuous and discontinuous edge conditions is analyzed to demonstrate the efficiency of the developed rotation-free weak-form quadrature method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bathe, K.J.: Finite Element Procedures in Engineering Analysis. Prentice-Hall Inc, Englewood Cliffs, New Jersey (1982)

    Google Scholar 

  2. Yang, T.Y.: Finite Element Structural Analysis. Prentice-Hall Inc, Englewood Cliffs, New Jersey (1986)

    Google Scholar 

  3. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics, 6th edn. Elsevier, Oxford (2005)

    MATH  Google Scholar 

  4. Duong, T.X., Roohbakhshan, F., Sauer, R.A.: A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries. Comput. Methods Appl. Mech. Eng. 316, 43–83 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Zhong, H., Yue, Z.G.: Analysis of thin plates by the weak form quadrature element method. Sci. China Phys. Mech. 55, 861–871 (2012)

    Article  Google Scholar 

  6. Cheung, Y.K., Tham, L.G., Li, W.Y.: Free vibration and static analysis of general plates by spline finite strip method. Comput. Mech. 3, 187–197 (1988)

    Article  MATH  Google Scholar 

  7. Li, W.Y., Cheung, Y.K., Tham, L.G.: Spline finite strip analysis of general plates. ASCE J. Eng. Mech. 112, 43–54 (1986)

    Article  Google Scholar 

  8. Wei, G.W.: Discrete singular convolution for the solution of the Fokker-Planck equations. J. Chem. Phys. 110, 8930–8942 (1999)

    Article  Google Scholar 

  9. Wei, G.W.: Discrete singular convolution for beam analysis. Eng. Struct. 23, 1045–1053 (2001)

    Article  Google Scholar 

  10. Wei, G.W., Zhao, Y.B., Xiang, Y.: A novel approach for the analysis of high-frequency vibrations. J. Sound Vib. 257, 207–246 (2002)

    Article  Google Scholar 

  11. Wang, X., Yuan, Z., Deng, J.: A review on the discrete singular convolution algorithm and its applications in structural mechanics and engineering. Arch Comput. Method E 27(5), 1633–1660 (2020)

    Article  MathSciNet  Google Scholar 

  12. Civalek, Ö.: Use of eight-node curvilinear domains in discrete singular convolution method for free vibration analysis of annular sector plates with simply supported radial edges. J. Vib. Control 16, 303–320 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gürses, M., Akgöz, B., Civalek, Ö.: Mathematical modeling of vibration problem of nano-sized annular sector plates using the nonlocal continuum theory via eight-node discrete singular convolution transformation. Appl. Math. Comput. 219, 3226–3240 (2012)

    MathSciNet  MATH  Google Scholar 

  14. Akgöz, B., Civalek, Ö.: Static and dynamic response of sector-shaped graphene sheets. Mech. Adv. Mater. Struct. 23, 432–442 (2016)

    Article  Google Scholar 

  15. Tornabene, F., Fantuzzi, N., Ubertini, F., Viola, E.: Strong formulation finite element method based on differential quadrature: a survey. Appl. Mech. Rev. 67, 020801 (2015)

    Article  Google Scholar 

  16. Bert, C.W., Malik, M.: The differential quadrature method for irregular domains and application to plate vibration. Int. J. Mech. Sci. 38, 589–606 (1996)

    Article  MATH  Google Scholar 

  17. Saviz, M.R.: Electro-elasto-dynamic analysis of functionally graded cylindrical shell with piezoelectric rings using differential quadrature method. Acta Mech. 228, 1645–1670 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Shojaee, M., Setoodeh, A.R., Malekzadeh, P.: Vibration of functionally graded CNTs-reinforced skewed cylindrical panels using a transformed differential quadrature method. Acta Mech. 228, 2691–2711 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cai, D., Zhou, G., Wang, X.: On mapping irregular plates without four corners into a regular domain. Appl. Math. Lett. 117, 107082 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  20. Xing, Y., Liu, B.: High-accuracy differential quadrature finite element method and its application to free vibrations of thin plate with curvilinear domain. Int. J. Numer. Methods Eng. 80, 1718–1742 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Striz, A.G., Chen, W.L., Bert, C.W.: Free vibration of plates by the high accuracy quadrature element method. J. Sound Vib. 202, 689–702 (1997)

    Article  MATH  Google Scholar 

  22. Wang, X., Yuan, Z., Jin, C.: Weak form quadrature element method and its applications in science and engineering: a state-of-the-art review. Appl. Mech. Rev. 69, 030801 (2017)

    Article  Google Scholar 

  23. Zhang, R., Zhong, H., Yao, X., Han, Q.: A quadrature element formulation of geometrically nonlinear laminated composite shells incorporating thickness stretch and drilling rotation. Acta Mech. 231, 1685–1709 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wang, X., Yuan, Z., Jin, C.: A general integration scheme in quadrature element method. Appl. Math. Lett. 105, 106305 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jin, C., Wang, X., Ge, L.: Novel weak form quadrature element method with expanded Chebyshev nodes. Appl. Math. Lett. 34, 51–59 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Onate, E., Zarate, F.: Rotation-free triangular plate and shell elements. Int. J. Numer. Methods Eng. 47, 557–603 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Brunet, M., Sabourin, F.: Analysis of a rotation-free 4-node shell element. Int. J. Numer. Methods Eng. 66, 1483–1510 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nguyen-Thanh, N., Zhou, K., Zhuang, X., Areias, P., Nguyen-Xuan, H., Bazilevs, Y., Rabczuk, T.: Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling. Comput. Methods Appl. Mech. Eng. 316, 1157–1178 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Wang, X., Striz, A.G., Bert, C.W.: Free vibration analysis of annular plates by the DQ method. J. Sound Vib. 164, 173–175 (1993)

    Article  Google Scholar 

  30. Timoshenko, S., Woinowsky-Krieger, S.: Theory of Plates and Shells, 2nd edn. McGraw-Hill, New York (1959)

    MATH  Google Scholar 

  31. Duan, G., Wang, X., Jin, C.: Free vibration analysis of circular thin plates with stepped thickness by the DSC element method. Thin-Walled Struct. 85, 25–33 (2014)

    Article  Google Scholar 

  32. Civalek, Ö.: Discrete singular convolution method and applications to free vibration analysis of circular and annular plates. Struct. Eng. Mech. 29(2), 237–240 (2008)

    Article  Google Scholar 

  33. Huang, C.S., Leissa, A.W., McGee, O.G.: Exact analytical solutions for the vibrations of sectorial plates with simply supported radial edges. J. Appl. Mech. 60, 478–483 (1993)

    Article  MATH  Google Scholar 

  34. Wang, X., Yuan, Z.: Techniques for vibration analysis of hybrid beam and ring structures with variable thickness. Comput. Struct. 206, 109–121 (2018)

    Article  Google Scholar 

  35. Wang, X.: Differential quadrature and differential quadrature based element methods: Theory and applications. Butterworth-Heinemann, Oxford (2015)

    MATH  Google Scholar 

  36. Boyd, J.P.: A numerical comparison of seven grids for polynomial interpolation on the interval. Comput. Math. Appl. 38, 35–50 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wang, X., Yuan, Z.: Three-dimensional vibration analysis of curved and twisted beams with irregular shapes of cross-sections by sub-parametric quadrature element method. Comput. Math. Appl. 76, 1486–1499 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  38. Lam, K.Y., Liew, K.M., Chow, S.T.: Use of two-dimensional orthogonal polynomials for vibration analysis of circular and elliptical plates. J. Sound Vib. 154, 261–269 (1992)

    Article  MATH  Google Scholar 

  39. Leissa, A.W., Narita, Y.: Natural frequencies of simply supported circular plates. J. Sound Vib. 70, 221–229 (1980)

    Article  MATH  Google Scholar 

  40. Narita, Y.: Free vibration analysis of orthotropic elliptical plates resting on arbitrarily distributed point supports. J. Sound Vib. 108, 1–10 (1986)

    Article  Google Scholar 

  41. Narita, Y.: Natural frequencies of free, orthotropic elliptical plates. J. Sound Vib. 100, 83–89 (1985)

    Article  Google Scholar 

  42. Kim, C.S., Dickinson, S.M.: On the lateral vibration of thin annular and circular composite plates subject to certain complicating effects. J. Sound Vib. 130, 363–377 (1989)

    Article  Google Scholar 

  43. Singh, B., Chakraverty, S.: On the use of orthogonal polynomials in the Rayleigh-Ritz method for the study of transverse vibration of elliptic plates. Comput. Struct. 43, 439–443 (1992)

    Article  MATH  Google Scholar 

  44. Jin, C., Wang, X.: Accurate free vibration of functionally graded skew plates. T. Nanjing Univ. Aeronaut. Astronaut. 34, 188–194 (2017)

    Google Scholar 

Download references

Acknowledgements

The partial supports from the National Natural Science Foundation of China (Grant No. 52005256), the Natural Science Foundation of Jiangsu Province (Grant No. BK20190394), Jiangsu Post-doctoral Research Funding Program (Grant No. 2020Z437), the Shanghai Aerospace Science and Technology Innovation Fund (Grant No. SAST2018-071), the Fundamental Research Funds for the Central Universities (Grant No. NS2019001), and the Priority Academic Program Development of Jiangsu Higher Education Institutions are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Deng’an Cai or Xinwei Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The general shape functions of a 16-node Serendipity element with nodes of any type are given below:

$$f_{1} = \frac{1}{4}(1 - \xi )(1 - \eta ) - \beta (f_{5} + f_{16} ) - \frac{1}{2}(f_{15} + f_{6} ) - \gamma (f_{7} + f_{14} ),$$
$$\begin{gathered} f_{2} = \frac{1}{4}(1 + \xi )(1 - \eta ) - \beta (f_{7} + f_{8} ) - \frac{1}{2}(f_{9} + f_{6} ) - \gamma (f_{5} + f_{10} ), \hfill \\ f_{3} = \frac{1}{4}(1 + \xi )(1 + \eta ) - \beta (f_{10} + f_{11} ) - \frac{1}{2}(f_{12} + f_{9} ) - \gamma (f_{8} + f_{13} ), \hfill \\ f_{4} = \frac{1}{4}(1 - \xi )(1 + \eta ) - \beta (f_{13} + f_{14} ) - \frac{1}{2}(f_{15} + f_{12} ) - \gamma (f_{11} + f_{16} ), \hfill \\ \end{gathered}$$
$$\begin{gathered} f_{5} = (\xi - x_{p} )(\xi - \xi^{3} )(1 - \eta )/\alpha, \hfill \\ f_{6} = (\xi^{2} - x_{p}^{2} )(1 - \xi^{2} )(1 - \eta )/\tau, \hfill \\ f_{7} = (\xi + x_{p} )(\xi - \xi^{3} )(1 - \eta )/\alpha, \hfill \\ \end{gathered}$$
$$\begin{gathered} f_{13} = (\xi - x_{p} )(\xi - \xi^{3} )(1 + \eta )/\alpha, \hfill \\ f_{12} = (\xi^{2} - x_{p}^{2} )(1 - \xi^{2} )(1 + \eta )/\tau, \hfill \\ f_{11} = (\xi + x_{p} )(\xi - \xi^{3} )(1 + \eta )/\alpha, \hfill \\ \end{gathered}$$
$$\begin{gathered} f_{8} = (\eta - x_{p} )(\eta - \eta^{3} )(1 + \xi )/\alpha, \hfill \\ f_{9} = (\eta^{2} - x_{p}^{2} )(1 - \eta^{2} )(1 + \xi )/\tau, \hfill \\ f_{10} = (\eta + x_{p} )(\eta - \eta^{3} )(1 + \xi )/\alpha, \hfill \\ \end{gathered}$$
$$\begin{gathered} f_{14} = (\eta + x_{p} )(\eta - \eta^{3} )(1 - \xi )/\alpha, \hfill \\ f_{15} = (\eta^{2} - x_{p}^{2} )(1 - \eta^{2} )(1 - \xi )/\tau, \hfill \\ f_{16} = (\eta - x_{p} )(\eta - \eta^{3} )(1 - \xi )/\alpha \hfill \\ \end{gathered}$$

where \(x_{p}\)(\(0 < x_{p} < 1\)) is shown in Fig. 1c, \(\tau = - 2x_{p}^{2} , \, \alpha = 4(x_{p}^{2} - x_{p}^{4} ), \, \beta = (1 + x_{p} )/2\), and \(\, \gamma = (1 - x_{p} )/2\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, D., Wang, X. & Zhou, G. An efficient quadrature method for vibration analysis of thin elliptical plates with continuous and discontinuous edge conditions. Acta Mech 232, 2575–2593 (2021). https://doi.org/10.1007/s00707-021-02971-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02971-0

Navigation