Skip to main content
Log in

Low Temperature Heat Transfer in Plate Heat Exchanger Using Ethylene Glycol–Water Based Al2O3 Nanofluid

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

In present work, experimental studies were carried out in a plate heat exchanger to investigate heat transfer characteristics such as heat transfer rate, overall heat transfer coefficient, convective heat transfer coefficient, effectiveness and pumping power for a 35:65 (v/v) ratio ethylene glycol and water mixture based Al2O3 nanofluid in weight concentration range of 0.2% to 2%. Distilled water was used as hot fluid and nanofluid as cold fluid. The effect of nanopowder concentration on heat transfer was investigated for 10 and − 5 °C inlet temperature and different flow rates of nanofluid. The result shows that substantial improvement in heat transfer was attained using nanofluid compared with base fluid (EG:water mixture). The overall heat transfer coefficient showed enhancement of 14.99% and 12.29% for nanofluid of 2 wt% concentration compared to base fluid (EG:water) at 10 °C and – 5 °C nanofluid inlet temperature respectively. However, a slight increase in pumping power was observed due to the increase in particle concentration. Effectiveness was found to be more at higher weight concentration. Correlation are proposed to predict the effective thermal conductivity and Nusselt number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

ASHRAE :

American Society of Heating, Refrigerating and Air-Conditioning Engineers

B :

Mean channel spacing (m)

BR :

Base ratio

c p :

Specific heat capacity (J·kg−1·K−1)

DI :

Distilled water

D h :

Hydrodynamic diameter (m)

EG:water:

Ethylene Glycol and water mixture

FESEM:

Field emission scanning electron microscopy

h :

Convective heat transfer coefficient (W·m−2·K−1)

k :

Thermal conductivity (W·m−1·K−1)

L eff :

Effective length of PHE (m)

m :

Mass of nanoparticles (g)

m hf :

Mass flow rate of hot fluid (kg·s−1)

m nf :

Mass flow rate of nanofluid (kg·s−1)

N cp :

Number of channels

NTU :

Number of transfer units

Nu :

Nusselt number

Pr :

Prandtl number

Q :

Heat transfer (W)

Re :

Reynolds number

T :

Temperature (K)

U :

Overall heat transfer coefficient (W·m−2·K−1)

β :

Chevron angle

ρ :

Density (kg·m−3)

µ :

Viscosity (cP)

ϕ w :

Weight concentration

ϕ v :

Volume concentration

Avg :

Average

bf :

Base fluid

c :

Cold side

e :

Effective

h :

Hot side

hf :

Hot fluid

max :

Maximum

min :

Minimum

np :

Nanoparticles

nf :

Nanofluid

in :

Inlet

out :

Outlet

t :

Thickness

References

  1. M.-Y. Wen, C.-Y. Ho, Appl. Therm. Eng. 29, 1050 (2009)

    Article  Google Scholar 

  2. Y. Hwang, J.K. Lee, C.G.H. Lee, Y.M. Jung, S.I. Cheong, C.G.H. Lee, B.C. Ku, S.P. Jang, Thermochim. Acta 455, 70 (2007)

    Article  Google Scholar 

  3. T. Yiamsawas, O. Mahian, A.S. Dalkilic, S. Kaewnai, S. Wongwises, Appl. Energy 111, 40 (2013)

    Article  Google Scholar 

  4. R.S. Vajjha, D.K. Das, Int. J. Heat Mass Transf. 52, 4675 (2009)

    Article  Google Scholar 

  5. K. M. Yashawantha, A. Asif, G. Ravindra Babu, and M. K. Ramis, J. Test. Eval. 49 (2021) (Published ahead of print).

  6. M. Kareemullah, K.M. Chethan, M.K. Fouzan, B.V. Darshan, A.R. Kaladgi, M.B.H. Prashanth, R. Muneer, K.M. Yashawantha, Recent Pat. Mech. Eng. 12, 350 (2019)

    Article  Google Scholar 

  7. S. Mukherjee, S.R. Panda, P.C. Mishra, P. Chaudhuri, Enhancing Thermophysical Characteristics and Heat Transfer Potential of TiO2/Water Nanofluid (Springer, New York, 2020)

    Book  Google Scholar 

  8. J. Zhang, X. Zhu, M.E. Mondejar, F. Haglind, Renew. Sustain. Energy Rev. 101, 305 (2019)

    Article  Google Scholar 

  9. Z. Wang, Z. Wu, F. Han, L. Wadsö, B. Sundén, Int. J. Therm. Sci. 130, 148 (2018)

    Article  Google Scholar 

  10. S. Kakac, H.H. Liu, Heat Exchangers Selection, Rating, and Thermal Design, 2nd edn. (CRC Press, Boca Raton, 2003)

    MATH  Google Scholar 

  11. S.D. Pandey, V.K. Nema, Exp. Thermal Fluid Sci. 38, 24 (2012)

    Article  Google Scholar 

  12. A.E. Kabeel, T. Abou El Maaty, Y. El Samadony, Appl. Therm. Eng. 52, 221 (2013)

    Article  Google Scholar 

  13. F.S. Javadi, S. Sadeghipour, R. Saidur, G. BoroumandJazi, B. Rahmati, M.M. Elias, M.R. Sohel, Int. Commun. Heat Mass Transfer 44, 58 (2013)

    Article  Google Scholar 

  14. M.A. Khairul, M.A. Alim, I.M. Mahbubul, R. Saidur, A. Hepbasli, A. Hossain, Int. Commun. Heat Mass Transfer 50, 8 (2013)

    Article  Google Scholar 

  15. A.K. Tiwari, P. Ghosh, J. Sarkar, Int. J. Heat Mass Transf. 89, 1110 (2015)

    Article  Google Scholar 

  16. D. Huang, Z. Wu, B. Sunden, Int. J. Heat Mass Transf. 89, 620 (2015)

    Article  Google Scholar 

  17. B. Sun, C. Peng, R. Zuo, D. Yang, H. Li, Exp. Thermal Fluid Sci. 76, 75 (2016)

    Article  Google Scholar 

  18. A. Behrangzade, M.M. Heyhat, Appl. Therm. Eng. 102, 311 (2016)

    Article  Google Scholar 

  19. V. Kumar, A. K. Tiwari, and S. K. Ghosh, in Materials Today: Proceedings (2017), pp. 4070–4078.

  20. S.H. Pourhoseini, N. Naghizadeh, H. Hoseinzadeh, Powder Technol. 332, 279 (2018)

    Article  Google Scholar 

  21. A. Bhattad, J. Sarkar, P. Ghosh, Heat Transfer Eng. 41, 522 (2020)

    Article  ADS  Google Scholar 

  22. Z. Taghizadeh-Tabari, S. Zeinali Heris, M. Moradi, M. Kahani, Renew. Sustain. Energy Rev. 58, 1318 (2016)

    Article  Google Scholar 

  23. ASHRAE, Handbook - Fundamentals (SI Edition), American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc. (2017).

  24. K.Y. Leong, Z.A. Najwa, K.Z. Ku Ahmad, H.C. Ong, Int. J. Thermophys. 38, 1 (2017)

    Article  Google Scholar 

  25. K. M. Yashawantha, A. Afzal, M. K. Ramis., J. U. Shareefraza, M. K. Ramis, and S. J. Ukkund, in AIP Conference Proceedings (2018), p. 020057.

  26. L. Syam Sundar, E. Venkata Ramana, M.K. Singh, A.C.M.M. Sousa, L.S. Sundar, E.V. Ramana, M.K. Singh, A.C.M.M. Sousa, Int. Commun. Heat Mass Transfer 56, 86 (2014)

    Article  Google Scholar 

  27. H.W. Chiam, W.H. Azmi, N.A. Usri, R. Mamat, N.M. Adam, Exp. Thermal Fluid Sci. 81, 420 (2017)

    Article  Google Scholar 

  28. K. M. Yashawantha and A. V. Vinod, J. Thermal Anal. Calorimet. (2020).

  29. R.S. Vajjha, D.K. Das, AIP Conf. Proc. 1063, 361 (2008)

    Article  ADS  Google Scholar 

  30. C.V. Popa, C.T. Nguyen, I. Gherasim, Int. J. Therm. Sci. 111, 108 (2017)

    Article  Google Scholar 

  31. R.J. Moffat, Exp. Thermal Fluid Sci. 1, 3 (1988)

    Article  ADS  Google Scholar 

  32. L.S. Sundar, M.H. Farooky, S.N. Sarada, M.K. Singh, H. Farooky, S.N. Sarada, M.K. Singh, Int. Commun. Heat Mass Transfer 41, 41 (2013)

    Article  Google Scholar 

  33. K.A. Hamid, W.H. Azmi, R. Mamat, N.A. Usri, Indian J. Pure Appl. Phys. 54, 651 (2016)

    Google Scholar 

  34. M.C.S. Reddy, V.V. Rao, Int. Commun. Heat Mass Transfer 46, 31 (2013)

    Article  Google Scholar 

  35. T.S. Krishnakumar, A. Sheeba, V. Mahesh, M. Jose Prakash, Int. J. Refrig 102, 55 (2019)

    Article  Google Scholar 

  36. Y. Li, J. Fernández-Seara, K. Du, Á.Á. Pardiñas, L.L. Latas, W. Jiang, Appl. Therm. Eng. 93, 537 (2016)

    Article  Google Scholar 

  37. Z.T. Tabari, S.Z. Heris, J. Dispersion Sci. Technol. 36, 196 (2015)

    Article  Google Scholar 

  38. A. Bhattad, J. Sarkar, P. Ghosh, J. Therm. Anal. Calorim. 139, 3777 (2020)

    Article  Google Scholar 

  39. H. Arya, M.M. Sarafraz, M. Arjomandi, J. Mech. Sci. Technol. 32, 3975 (2018)

    Article  Google Scholar 

  40. A.K. Tiwari, P. Ghosh, J. Sarkar, Exp. Thermal Fluid Sci. 49, 141 (2013)

    Article  Google Scholar 

  41. A.K. Tiwari, P. Ghosh, J. Sarkar, Appl. Therm. Eng. 57, 24 (2013)

    Article  Google Scholar 

  42. M. Goodarzi, A. Amiri, M. S. Goodarzi, M. R. Safaei, A. Karimipour, E. M. Languri, and M. Dahari, Int. Commun. Heat Mass Transfer (2015).

  43. A. K. Tiwari, P. Ghosh, and J. Sarkar, Int. Commun. Heat Mass Transfer (2015).

  44. M.M. Sarafraz, V. Nikkhah, S.A. Madani, M. Jafarian, F. Hormozi, Appl. Therm. Eng. 121, 388 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Aeronautics Research & Development Board (AR&DB) of Defence Research and Development Organisation (DRDO), India for the financial support under project sanction Grant No. of ARDB/01/2031857/M/I

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Venu Vinod.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1: Outlet temperature (°C) of the base fluid and nanofluid at different nanofluid inlet temperature (°C)

Appendix 1: Outlet temperature (°C) of the base fluid and nanofluid at different nanofluid inlet temperature (°C)

Base fluid

0.2 wt%

0.5 wt%

1 wt%

1.5 wt%

2wt%

Th,in

Tc,in

Th,out

Tc,out

Th,out

Tc,out

Th,out

Tc,out

Th,out

Tc,out

Th,out

Tc,out

Th,out

Tc,out

60

− 5

21.1

43.9

20.8

44.1

20.6

44.4

20.4

44.7

20.1

45

19.9

45.3

60

− 5

18.9

41.1

18.5

41.3

18.3

41.6

18.1

41.9

17.8

42.3

17.6

42.8

60

− 5

17.1

38.6

16.8

38.9

16.6

39.2

16.4

39.4

16.1

39.8

15.9

40.5

60

− 5

15.8

36.9

15.5

37.3

15.3

37.6

14.9

37.8

14.6

38.2

14.3

38.7

60

− 5

14.2

34.6

13.9

35.1

13.7

35.3

13.3

35.5

12.9

35.9

12.7

36.4

60

− 5

12.8

32.8

12.5

33.3

12.3

33.5

11.9

33.7

11.6

34.4

11.3

34.6

60

− 5

11.3

30.9

11

31.4

10.8

31.6

10.4

32

10

32.4

9.8

32.7

60

10

31.6

45.7

31.4

46

31

46.1

30.8

46.6

30.6

46.8

30.4

47.3

60

10

30.4

44.1

30.2

44.5

29.8

44.6

29.6

45

29.4

45.4

29.1

45.7

60

10

29.2

42

29

42.4

28.7

42.7

28.4

43

28.1

43.3

27.8

43.6

60

10

27.9

40.5

27.6

40.9

27.3

41.1

26.9

41.5

26.7

41.9

26.3

42.1

60

10

26.9

38.7

26.5

39.1

26.3

39.3

25.9

39.8

25.7

40.1

25.3

40.3

60

10

25.3

36.7

24.9

37.1

24.7

37.3

24.3

37.8

24

38.1

23.7

38.3

60

10

24.3

35.2

23.9

35.6

23.7

35.8

23.2

36.2

23

36.6

22.7

36.8

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yashawantha, K.M., Gurjar, G. & Vinod, A.V. Low Temperature Heat Transfer in Plate Heat Exchanger Using Ethylene Glycol–Water Based Al2O3 Nanofluid. Int J Thermophys 42, 90 (2021). https://doi.org/10.1007/s10765-021-02843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-021-02843-8

Keywords

Navigation