Skip to main content
Log in

Rotation Forest for multi-target regression

  • Original Article
  • Published:
International Journal of Machine Learning and Cybernetics Aims and scope Submit manuscript

A Correction to this article was published on 25 July 2021

This article has been updated

Abstract

The prediction of multiple numeric outputs at the same time is called multi-target regression (MTR), and it has gained attention during the last decades. This task is a challenging research topic in supervised learning because it poses additional difficulties to traditional single-target regression (STR), and many real-world problems involve the prediction of multiple targets at once. One of the most successful approaches to deal with MTR, although not the only one, consists in transforming the problem in several STR problems, whose outputs will be combined building up the MTR output. In this paper, the Rotation Forest ensemble method, previously proposed for single-label classification and single-target regression, is adapted to MTR tasks and tested with several regressors and data sets. Our proposal rotates the input space in an efficient and novel fashion, avoiding extra rotations forced by MTR problem decomposition. Four approaches for MTR are used: single-target (ST), stacked-single target (SST), Ensembles of Regressor Chains (ERC), and Multi-target Regression via Quantization (MRQ). For assessing the benefits of the proposal, a thorough experimentation with 28 MTR data sets and statistical tests are used, concluding that Rotation Forest, adapted by means of these approaches, outperforms other popular ensembles, such as Bagging and Random Forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

Notes

  1. If the number of features is not a multiple of 3, the last group is completed with previously selected features.

  2. http://mulan.sourceforge.net/datasets-mtr.html.

  3. http://people.vcu.edu/~acano/MTR-SVRCC/datasets.zip.

  4. There can be repetitions among these chains, specially if the number of targets is low.

  5. Code available at https://github.com/hfawaz/cd-diagram.

  6. There is neither advantage according to the average ranks nor Bayesian tests from the results of all the data sets. But for particular data sets the results were improved with other RotF methods.

References

  1. Abraham Z, Tan PN, Winkler J, Zhong S, Liszewska M, et al (2013) Position preserving multi-output prediction. In: Joint European conference on machine learning and knowledge discovery in databases. Springer, pp 320–335

  2. Adıyeke E, Baydoğan MG (2020) The benefits of target relations: a comparison of multitask extensions and classifier chains. Pattern Recogn 107:107507

    Google Scholar 

  3. Aho T, Ženko B, Džeroski S, Elomaa T (2012) Multi-target regression with rule ensembles. J Mach Learn Res 13(Aug):2367–2407

    MathSciNet  MATH  Google Scholar 

  4. Aho T, Ženko B, Džeroski S (2009) Rule ensembles for multi-target regression. In: 2009 Ninth IEEE International Conference on Data Mining, pp 21–30. IEEE

  5. Alvarez MA, Rosasco L, Lawrence ND et al (2012) Kernels for vector-valued functions: a review. Found Trends Mach Learn 4(3):195–266

    MATH  Google Scholar 

  6. Appice A, Džeroski S (2007) Stepwise induction of multi-target model trees. In: European Conference on Machine Learning. Springer, pp 502–509

  7. Argyriou A, Evgeniou T, Pontil M (2008) Convex multi-task feature learning. Mach Learn 73(3):243–272

    MATH  Google Scholar 

  8. Argyriou A, Evgeniou T, Pontil M (2006) Multi-task feature learning. In: Advances in neural information processing systems. pp 41–48

  9. Ayerdi B, Graña M (2014) Hybrid extreme rotation forest. Neural Networks 52:33–42

    MATH  Google Scholar 

  10. Benavoli A, Corani G, Mangili F (2016) Should we really use post-hoc tests based on mean-ranks? J Mach Learn Res 17(1):152–161

    MathSciNet  MATH  Google Scholar 

  11. Benavoli A, Corani G, Demšar J, Zaffalon M (2017) Time for a change: a tutorial for comparing multiple classifiers through bayesian analysis. J Mach Learn Res 18(77): 1–36. http://jmlr.org/papers/v18/16-305.html

  12. Blaser R, Fryzlewicz P (2016) Random rotation ensembles. J Mach Learn Res 17(1):126–151

    MathSciNet  MATH  Google Scholar 

  13. Borchani H, Varando G, Bielza C, Larrañaga P (2015) A survey on multi-output regression. Wiley Interdiscip Rev 5(5):216–233

    Google Scholar 

  14. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    MATH  Google Scholar 

  15. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    MATH  Google Scholar 

  16. Breiman L, Friedman JH (1997) Predicting multivariate responses in multiple linear regression. J Roy Stat Soc 59(1):3–54

    MathSciNet  MATH  Google Scholar 

  17. Breskvar M, Kocev D, Džeroski S (2018) Ensembles for multi-target regression with random output selections. Mach Learn 107(11):1673–1709

    MathSciNet  MATH  Google Scholar 

  18. Cai Z, Zhu W (2018) Multi-label feature selection via feature manifold learning and sparsity regularization. Int J Mach Learn Cybernet 9(8):1321–1334. https://doi.org/10.1007/s13042-017-0647-y

    Article  Google Scholar 

  19. Caruana R (1994) Learning many related tasks at the same time with backpropagation. In: Advances in neural information processing systems. pp 657–664

  20. Collobert R, Weston J (2008) A unified architecture for natural language processing: Deep neural networks with multitask learning. In: Proceedings of the 25th international conference on Machine learning. pp 160–167. ACM

  21. De’Ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83(4):1105–1117

    Google Scholar 

  22. Demšar J (2006) Statistical comparisons of classifiers over multiple data sets. J Mach Learn Res 7(Jan):1–30

    MathSciNet  MATH  Google Scholar 

  23. Dua D, Graff C (2019) UCI machine learning repository. http://archive.ics.uci.edu/ml

  24. Džeroski S, Demšar D, Grbović J (2000) Predicting chemical parameters of river water quality from bioindicator data. Appl Intell 13(1):7–17

    Google Scholar 

  25. Garcia S, Herrera F (2008) An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons. J Mach Learn Res 9(12): 2677–2694

  26. García-Pedrajas N, Maudes-Raedo J, García-Osorio C, Rodríguez-Díez JJ (2012) Supervised subspace projections for constructing ensembles of classifiers. Inf Sci 193:1–21

    Google Scholar 

  27. Ghosn J, Bengio Y (1997) Multi-task learning for stock selection. Adv Neural Inf Process Syst pp. 946–952

  28. Godbole S, Sarawagi S (2004) Discriminative methods for multi-labeled classification. In: Pacific-Asia conference on knowledge discovery and data mining. Springer, pp 22–30

  29. Goovaerts P et al (1997) Geostatistics for natural resources evaluation. Oxford University Press on Demand

    Google Scholar 

  30. Hatzikos EV, Tsoumakas G, Tzanis G, Bassiliades N, Vlahavas I (2008) An empirical study on sea water quality prediction. Knowl-Based Syst 21(6):471–478

    Google Scholar 

  31. Herrera F, Charte F, Rivera AJ, Del Jesus MJ (2016) Multilabel classification. In: Multilabel classification. Springer, pp 17–31

  32. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Google Scholar 

  33. Ismail Fawaz H, Forestier G, Weber J, Idoumghar L, Muller PA (2019) Deep learning for time series classification: a review. Data Min Knowl Disc 33(4):917–963

    MathSciNet  MATH  Google Scholar 

  34. Izenman AJ (1975) Reduced-rank regression for the multivariate linear model. J Multivar Anal 5(2):248–264

    MathSciNet  MATH  Google Scholar 

  35. Jalali A, Sanghavi S, Ruan C, Ravikumar PK (2010) A dirty model for multi-task learning. Adv Neural Inf Process Syste 23:964–972

  36. Jeong JY, Kang JS, Jun CH (2020) Regularization-based model tree for multi-output regression. Inf Sci 507:240–255

    MathSciNet  MATH  Google Scholar 

  37. Juez-Gil M (2020) mjuez/baycomp\_plotting. https://doi.org/10.5281/zenodo.4244542

  38. Kaggle (2012) Kaggle competition: online product sales. https://www.kaggle.com/c/online-sales

  39. Kaggle (2013) Kaggle competition: see click predict fix. https://www.kaggle.com/c/see-click-predict-fix

  40. Karalič A, Bratko I (1997) First order regression. Mach Learn 26(2–3):147–176

    MATH  Google Scholar 

  41. Kocev D, Vens C, Struyf J, Džeroski S (2013) Tree ensembles for predicting structured outputs. Pattern Recogn 46(3):817–833

    Google Scholar 

  42. Kocev D, Vens C, Struyf J, Džeroski S (2007) Ensembles of multi-objective decision trees. In: European conference on machine learning. Springer, pp 624–631

  43. Kordos M, Arnaiz-González Á, García-Osorio C (2019) Evolutionary prototype selection for multi-output regression. Neurocomputing 358:309–320

    Google Scholar 

  44. Kuncheva LI (2014) Combining pattern classifiers: methods and algorithms, 2nd edn. Wiley

    MATH  Google Scholar 

  45. Latorre Carmona P, Sotoca JM, Pla F (2012) Filter-type variable selection based on information measures for regression tasks. Entropy 14(2):323–343

    MATH  Google Scholar 

  46. Li H, Zhang W, Chen Y, Guo Y, Li GZ, Zhu X (2017) A novel multi-target regression framework for time-series prediction of drug efficacy. Sci Rep 7:40652

    Google Scholar 

  47. Mastelini SM, da Costa VGT, Santana EJ, Nakano FK, Guido RC, Cerri R, Barbon S (2019) Multi-output tree chaining: an interpretative modelling and lightweight multi-target approach. J Signal Process Syst 91(2):191–215

    Google Scholar 

  48. Melki G, Cano A, Kecman V, Ventura S (2017) Multi-target support vector regression via correlation regressor chains. Inf Sci 415:53–69

    MathSciNet  MATH  Google Scholar 

  49. Mitrović T, Antanasijević D, Lazović S, Perić-Grujić A, Ristić M (2019) Virtual water quality monitoring at inactive monitoring sites using monte carlo optimized artificial neural networks: a case study of danube river (serbia). Sci Total Environ 654:1000–1009

    Google Scholar 

  50. Nunes M, Gerding E, McGroarty F, Niranjan M (2019) A comparison of multitask and single task learning with artificial neural networks for yield curve forecasting. Expert Syst Appl 119:362–375

    Google Scholar 

  51. Obozinski G, Taskar B, Jordan MI (2010) Joint covariate selection and joint subspace selection for multiple classification problems. Stat Comput 20(2):231–252

    MathSciNet  Google Scholar 

  52. Pardo C, Diez-Pastor JF, García-Osorio C, Rodríguez JJ (2013) Rotation forests for regression. Appl Math Comput 219(19):9914–9924

    MathSciNet  MATH  Google Scholar 

  53. Petković M, Kocev D, Džeroski S (2020) Feature ranking for multi-target regression. Mach Learn 109(6):1179–1204

  54. Pham BT, Bui DT, Prakash I, Dholakia M (2016) Rotation forest fuzzy rule-based classifier ensemble for spatial prediction of landslides using gis. Nat Hazards 83(1):97–127

    Google Scholar 

  55. Polikar R (2006) Ensemble based systems in decision making. IEEE Circuits Syst Mag 6(3):21–45. https://doi.org/10.1109/MCAS.2006.1688199

    Article  Google Scholar 

  56. Read J, Pfahringer B, Holmes G, Frank E (2011) Classifier chains for multi-label classification. Mach Learn 85(3):333

    MathSciNet  Google Scholar 

  57. Reyes O, Fardoun HM, Ventura S (2018) An ensemble-based method for the selection of instances in the multi-target regression problem. Integr Comput-Aided Eng 25(4):305–320

    Google Scholar 

  58. Rodríguez JJ, Kuncheva LI, Alonso CJ (2006) Rotation forest: a new classifier ensemble method. IEEE Trans Pattern Anal Mach Intell 28(10):1619–1630. https://doi.org/10.1109/TPAMI.2006.211. http://doi.ieeecomputersociety.org/10.1109/TPAMI.2006.211

  59. Sánchez-Fernández M, de Prado-Cumplido M, Arenas-García J, Pérez-Cruz F (2004) SVM multiregression for nonlinear channel estimation in multiple-input multiple-output systems. IEEE Trans Signal Process 52(8):2298–2307

    MathSciNet  MATH  Google Scholar 

  60. Santana EJ, Geronimo BC, Mastelini SM, Carvalho RH, Barbin DF, Ida EI, Barbon S Jr (2018) Predicting poultry meat characteristics using an enhanced multi-target regression method. Biosyst Eng 171:193–204

    Google Scholar 

  61. Shim J, Kang S, Cho S (2020) Kernel rotation forests for classification. In: 2020 IEEE International Conference on Big Data and Smart Computing (BigComp). pp 406–409. IEEE

  62. Spyromitros-Xioufis E, Tsoumakas G, Groves W, Vlahavas I (2016) Multi-target regression via input space expansion: treating targets as inputs. Mach Learn 104(1):55–98

    MathSciNet  MATH  Google Scholar 

  63. Spyromitros-Xioufis E, Sechidis K, Vlahavas I (2020) Multi-target regression via output space quantization. In: 2020 International Joint Conference on Neural Networks (IJCNN). pp 1–9. IEEE

  64. Stiglic G, Rodriguez JJ, Kokol P (2011) Rotation of random forests for genomic and proteomic classification problems. In: Software tools and algorithms for biological systems. Springer, pp 211–221

  65. Struyf J, Džeroski S (2005) Constraint based induction of multi-objective regression trees. In: International workshop on knowledge discovery in inductive databases. Springer, pp 222–233

  66. Triguero I, Basgalupp M, Cerri R, Schietgat L, Vens C (2016) Partitioning the target space in multi-output learning. In: Proceedings of the 25th Belgian-Dutch Machine Learning Conference (Benelearn)

  67. Tsanas A, Xifara A (2012) Accurate quantitative estimation of energy performance of residential buildings using statistical machine learning tools. Energy Build 49:560–567

    Google Scholar 

  68. Tsoumakas G, Spyromitros-Xioufis E, Vilcek J, Vlahavas I (2011) Mulan: a java library for multi-label learning. J Mach Learn Res 12:2411–2414

    MathSciNet  MATH  Google Scholar 

  69. Tsoumakas G, Spyromitros-Xioufis E, Vrekou A, Vlahavas I (2014) Multi-target regression via random linear target combinations. In: Joint european conference on machine learning and knowledge discovery in databases. Springer, pp 225–240

  70. Van Der Merwe A, Zidek J (1980) Multivariate regression analysis and canonical variates. Can J Stat 8(1):27–39

    MathSciNet  MATH  Google Scholar 

  71. Vazquez E, Walter E (2003) Multi-output suppport vector regression. IFAC Proc Volumes 36(16):1783–1788

    Google Scholar 

  72. Wang L, You ZH, Xia SX, Chen X, Yan X, Zhou Y, Liu F (2018) An improved efficient rotation forest algorithm to predict the interactions among proteins. Soft Comput 22(10):3373–3381

    Google Scholar 

  73. Wang J, Chen Z, Sun K, Li H, Deng X (2019) Multi-target regression via target specific features. Knowl-Based Syst 170:70–78

    Google Scholar 

  74. Wilson DR, Martinez TR (2000) Reduction techniques for instance-based learning algorithms. Mach Learn 38(3):257–286

    MATH  Google Scholar 

  75. Wolpert DH (1992) Stacked generalization. Neural Networks 5(2):241–259

    Google Scholar 

  76. Xu S, An X, Qiao X, Zhu L, Li L (2013) Multi-output least-squares support vector regression machines. Pattern Recogn Lett 34(9):1078–1084

    Google Scholar 

  77. Yeh IC (2007) Modeling slump flow of concrete using second-order regressions and artificial neural networks. Cement Concr Compos 29(6):474–480

    Google Scholar 

  78. Zeng J, Liu Y, Leng B, Xiong Z, Cheung YM (2017) Dimensionality reduction in multiple ordinal regression. IEEE Trans Neural Networks Learn Syst 29(9):4088–4101

    Google Scholar 

  79. Zhang CX, Zhang JS (2008) Rotboost: a technique for combining rotation forest and adaboost. Pattern Recogn Lett 29(10):1524–1536

    Google Scholar 

  80. Zhang W, Liu X, Ding Y, Shi D (2012) Multi-output lS-SVR machine in extended feature space. In: 2012 IEEE International conference on computational intelligence for measurement systems and applications (CIMSA) proceedings. pp 130–134. IEEE

  81. Zhen X, Yu M, He X, Li S (2017) Multi-target regression via robust low-rank learning. IEEE Trans Pattern Anal Mach Intell 40(2):497–504

    Google Scholar 

  82. Zhen X, Wang Z, Yu M, Li S (2015) Supervised descriptor learning for multi-output regression. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp 1211–1218

  83. Zhu X, Gao Z (2018) An efficient gradient-based model selection algorithm for multi-output least-squares support vector regression machines. Pattern Recogn Lett 111:16–22

    Google Scholar 

  84. Zolfagharnasab H, Bessa S, Oliveira S, Faria P, Teixeira J, Cardoso J, Oliveira H (2018) A regression model for predicting shape deformation after breast conserving surgery. Sensors 18(1):167

    Google Scholar 

Download references

Acknowledgements

We thank Eleftherios Spyromitros-Xioufis and Esra Adıyeke for their help with the implementations [2, 63]. This work was supported by the Ministerio de Economía y Competitividad of the Spanish Government under project TIN2015-67534-P (MINECO-FEDER, UE), by the Junta de Castilla y León under project BU085P17 (JCyL/FEDER, UE) (both projects co-financed through European Union FEDER funds), and by the Consejería de Educación of the Junta de Castilla y León and the European Social Fund with the EDU/1100/2017 pre-doctoral grant. The authors gratefully acknowledge the support of the NVIDIA Corporation and its donation of the TITAN Xp GPUs used in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Álvar Arnaiz-González.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised due to change in figures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, J.J., Juez-Gil, M., López-Nozal, C. et al. Rotation Forest for multi-target regression. Int. J. Mach. Learn. & Cyber. 13, 523–548 (2022). https://doi.org/10.1007/s13042-021-01329-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13042-021-01329-1

Keywords

Navigation