Skip to main content
Log in

A secure communication method based on 6-D hyperchaos and circuit implementation

  • Published:
Telecommunication Systems Aims and scope Submit manuscript

Abstract

This paper presented a novel six-dimensional hyperchaotic system and constructed a new chaotic communication encryption method to take advantage of every dimensional sequence of the system. Based on the existing four-dimensional Lorenz system, a new six-dimensional hyperchaotic system is proposed and some related dynamic characteristics of the system are analyzed. To improve the security of communication, the signals are decomposed into n groups of linearly independent data, and the n groups of data are linked with n-dimensional sequence s of the system. A circuit simulation experiment is performed to verify the effectiveness of the method. The experimental results show that combining \(n\) groups of linearly independent data with n-dimensional chaotic sequences increases the utilization of chaotic sequences and improves the security of secure communication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Rossler, O. E. (1979). An equation for hyperchaos. Physics Letters A, 71(2–3), 155–157.

    Article  Google Scholar 

  2. Lü, J., & Chen, G. (2002). A new chaotic attractor coined. International Journal of Bifurcation and chaos, 12(03), 659–661.

    Article  Google Scholar 

  3. Lu, J. G. (2005). Chaotic dynamics and synchronization of fractional-order Arneodo’s systems. Chaos Solitons & Fractals, 26(4), 1125–1133.

    Article  Google Scholar 

  4. Nezhad, S. M. T., Nazari, M., & Gharavol, E. A. (2016). A novel DoS and DDoS attacks detection algorithm using ARIMA time series model and chaotic system in computer networks. IEEE Communications Letters, 20(4), 700–703.

    Article  Google Scholar 

  5. Singh, J. P., & Roy, B. K. (2018). Second order adaptive time varying sliding mode control for synchronization of hidden chaotic orbits in a new uncertain 4-D conservative chaotic system. Transactions of the Institute of Measurement and Control, 40(13), 3573–3586.

    Article  Google Scholar 

  6. Vaidyanathan, S., Sambas, A., Kacar, S., & Çavuşoğlu, Ü. (2018). A new three-dimensional chaotic system with a cloud-shaped curve of equilibrium points, its circuit implementation and sound encryption. International Journal of Modelling, Identification and Control, 30(3), 184–196.

    Article  Google Scholar 

  7. Wei, Z., Pham, V. T., Khalaf, A. J., Kengne, J., & Jafari, S. (2018). A modified multistable chaotic oscillator. International Journal of Bifurcation and Chaos, 28(7), 1850085.

    Article  Google Scholar 

  8. Murali, K., Yu, H., Varadan, V., & Leung, H. (2001). Secure communication using a chaos based signal encryption scheme. IEEE Transactions on Consumer Electronics, 47(4), 709–714.

    Article  Google Scholar 

  9. Leifsson, L., Du, X., & Koziel, S. (2020). Efficient yield estimation of multiband patch antennas by polynomial chaos-based Kriging. International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, 33(6), e2722.

    Article  Google Scholar 

  10. Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic systems. Physical Review Letters, 64(8), 821–824.

    Article  Google Scholar 

  11. Milanovic, V., & Zaghloul, M. E. (1996). Improved masking algorithm for chaotic communications systems. Electronics Letters, 32(1), 11–12.

    Article  Google Scholar 

  12. Alvarez, G., Montoya, F., Romera, M., & Pastor, G. (2004). Breaking parameter modulated chaotic secure communication system. Chaos, Solitons & Fractals, 21(4), 783–787.

    Article  Google Scholar 

  13. Behnia, S., Akhshani, A., Mahmodi, H., & Akhavan, A. (2008). A novel algorithm for image encryption based on mixture of chaotic maps. Chaos, Solitons & Fractals, 35(2), 408–419.

    Article  Google Scholar 

  14. Lezhu, L., Jiqian, Z., Guixia, X., Li-Si, L., & Mao-Sheng, W. (2014). A chaotic secure communication method based on chaos systems partial series parameter estimation. Acta Physica Sinica, 63(1), 010501.

    Article  Google Scholar 

  15. Nana, B., & Woafo, P. (2015). Chaotic masking of communication in an emitter–relay–receiver electronic setup. Nonlinear Dynamics, 82(1–2), 899–908.

    Article  Google Scholar 

  16. Wang, Q., Yu, S., Li, C., Lü, J., Fang, X., Guyeux, C., & Bahi, J. M. (2016). Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 63(3), 401–412.

    Article  Google Scholar 

  17. Hassan, M. F. (2016). Synchronization of uncertain constrained hyperchaotic systems and chaos-based secure communications via a novel decomposed nonlinear stochastic estimator. Nonlinear Dynamics, 83(4), 2183–2211.

    Article  Google Scholar 

  18. Fataf, N. A., Palit, S. K., Mukherjee, S., Said, M. R., Son, D. H., & Banerjee, S. (2017). Communication scheme using a hyperchaotic semiconductor laser model: Chaos shift key revisited. The European Physical Journal Plus, 132(11), 1–8.

    Article  Google Scholar 

  19. Kassim, S., Hamiche, H., Djennoune, S., & Bettayeb, M. (2017). A novel secure image transmission scheme based on synchronization of fractional-order discrete-time hyperchaotic systems. Nonlinear Dynamics, 88(4), 2473–2489.

    Article  Google Scholar 

  20. Vaidyanathan, S., Akgul, A., Kaçar, S., & Çavuşoğlu, U. (2018). A new 4-D chaotic hyperjerk system, its synchronization, circuit design and applications in RNG, image encryption and chaos-based steganography. The European Physical Journal Plus, 133(2), 1–8.

    Article  Google Scholar 

  21. Sangpet, T., & Kuntanapreeda, S. (2020). Finite-time synchronization of hyperchaotic systems based on feedback passivation. Chaos, Solitons & Fractals, 132, 109605.

    Article  Google Scholar 

  22. Chen, S., Yu, S., Lü, J., Chen, G., & He, J. (2017). Design and FPGA-based realization of a chaotic secure video communication system. IEEE transactions on circuits and systems for video technology, 28(9), 2359–2371.

    Article  Google Scholar 

  23. Hashemi, S., Pourmina, M. A., Mobayen, S., & Alagheband, M. R. (2020). Design of a secure communication system between base transmitter station and mobile equipment based on finite-time chaos synchronisation. International Journal of Systems Science, 51(11), 1969–1986.

    Article  Google Scholar 

  24. Wang, X. Y., & Wang, M. J. (2007). Hyperchaotic Lorenz system. Acta Physica Sinica, 56(9), 5136–5141.

    Article  Google Scholar 

  25. Yu, W., Wang, J., Wang, J., Zhu, H., Li, M., Li, Y., & Jiang, D. (2019). Design of a new seven-dimensional hyperchaotic circuit and its application in secure communication. IEEE Access, 7, 125586–125608.

    Article  Google Scholar 

  26. Rajagopal, K., Jahanshahi, H., Varan, M., Bayır, I., Pham, V. T., Jafari, S., & Karthikeyan, A. (2018). A hyperchaotic memristor oscillator with fuzzy based chaos control and LQR based chaos synchronization. AEU-International Journal of Electronics and Communications, 94, 55–68.

    Article  Google Scholar 

  27. Khan, A., Jahanzaib, L. S., & Trikha, P. (2020). Secure communication: Using parallel synchronization technique on novel fractional order chaotic system. IFAC-PapersOnLine, 53(1), 307–312.

    Article  Google Scholar 

  28. Ouannas, A., Azar, A. T., & Vaidyanathan, S. (2017). A robust method for new fractional hybrid chaos synchronization. Mathematical Methods in the Applied Sciences, 40(5), 1804–1812.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WenXin Yu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., Yu, W. A secure communication method based on 6-D hyperchaos and circuit implementation. Telecommun Syst 77, 731–751 (2021). https://doi.org/10.1007/s11235-021-00790-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11235-021-00790-1

Keywords

Navigation