Skip to main content
Log in

Sensitivity and robustness of Lagrangian coherent structures in coastal water systems

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

In coastal water systems, horizontal chaotic dispersion plays a significant role in the distribution and fate of pollutants. Lagrangian Coherent Structures (LCSs) provide useful tools to study the problem of the transport of pollutants and have only recently been applied to coastal waters. While the fundamentals of the LCS approach using idealised analytical flow fields are well established in the literature, there are limited studies on their practical implementations in coastal waters where effects of boundaries and bathymetry frequently become significant. Due to their complex bathymetry and boundaries, unstructured grid systems are commonly used in modelling of coastal waters. For convenient derivation of LCS diagnostics, structured grids are commonly used. Here we examine the effect of mesh resolution, interpolation schemes and additive random noise on the LCS diagnostics in relation to coastal waters. Two kinematic model flows, the double gyre and the meandering jet, as well as validated outputs of a hydrodynamic model of Moreton Bay, Australia, on unstructured grids are used. The results show that LCSs are quite robust to the errors from interpolation schemes used in the data conversion from unstructured to structured grid. Attributed to the divergence in the underlying flow field, the results show that random errors in the order of 1–10% cause a breakdown in the continuity of ridges of maximum finite-time Lyapunov exponents and closed orbit elliptic LCSs. The result has significant implications on the suitability of applying LCS formulations based on a deterministic flow field to diffusive coastal waters.

Highlights

  • The work examines the sensitivities of applying Lagrangian coherent structure (LCS) diagnostics for coastal waters with complex boundaries.

  • LCSs are robust to the errors from interpolation schemes used for unstructured to structured grid velocity data conversion.

  • Additive random errors in the order of 1–10 % cause a breakdown in the continuity of ridges of maximum finite-time Lyapunov exponents and closed orbit elliptic LCSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Galan A, Orfila A, Simarro G, Hernández-Carrasco I, Lopez C (2012) Wave mixing rise inferred from Lyapunov exponents. Environ Fluid Mech 12:291–300. https://doi.org/10.1007/s10652-012-9238-3

    Article  Google Scholar 

  2. Browne MA, Chapman MG, Thompson RC, Amaral Zettler LA, Jambeck J, Mallos NJ (2015) Spatial and temporal patterns of stranded intertidal marine debris: is there a picture of global change? Environ Sci Technol 49:7082–7094. https://doi.org/10.1021/es5060572

    Article  Google Scholar 

  3. Toimil A, Losada IJ, Nicholls RJ, Dalrymple RA, Stive MJF (2020) Addressing the challenges of climate change risks and adaptation in coastal areas: a review. Coast Eng 156:103611. https://doi.org/10.1016/j.coastaleng.2019.103611

    Article  Google Scholar 

  4. Suara K, Chanson H, Borgas M, Brown RJ (2017) Relative dispersion of clustered drifters in a small micro-tidal estuary. Estuar Coast Shelf Sci 194:1–15. https://doi.org/10.1016/j.ecss.2017.05.001

    Article  Google Scholar 

  5. De Brye B, de Brauwere A, Gourgue O, Kärnä T, Lambrechts J, Comblen R, Deleersnijder E (2010) A finite-element, multi-scale model of the Scheldt tributaries, river, estuary and ROFI. Coast Eng 57:850–863. https://doi.org/10.1016/j.coastaleng.2010.04.001

    Article  Google Scholar 

  6. Yu Y, Zhang H, Spencer D, Dunn RJ, Lemckert C (2016) An investigation of dispersion characteristics in shallow coastal waters. Estuar Coast Shelf Sci 180:21–32. https://doi.org/10.1016/j.ecss.2016.06.005

    Article  Google Scholar 

  7. Legrand S, Deleersnijder E, Hanert E, Legat V, Wolanski E (2006) High-resolution, unstructured meshes for hydrodynamic models of the Great Barrier Reef, Australia. Estuar Coast Shelf Sci 68:36–46. https://doi.org/10.1016/j.ecss.2005.08.017

    Article  Google Scholar 

  8. Canestrelli A, Dumbser M, Siviglia A, Toro EF (2010) Well-balanced high-order centered schemes on unstructured meshes for shallow water equations with fixed and mobile bed. Adv Water Resour 33:291–303. https://doi.org/10.1016/j.advwatres.2009.12.006

    Article  Google Scholar 

  9. Lee J, Valle-Levinson A (2012) Influence of bathymetry on hydrography and circulation at the region between an estuary mouth and the adjacent continental shelf. Cont Shelf Res 41:77–91. https://doi.org/10.1016/j.csr.2012.04.006

    Article  Google Scholar 

  10. Haller G (2015) Lagrangian coherent structures. Annu Rev Fluid Mech 47:137–162. https://doi.org/10.1146/annurev-fluid-010313-141322

    Article  Google Scholar 

  11. Peacock T, Haller G (2013) Lagrangian coherent structures: the hidden skeleton of fluid flows. Phys Today 66:41–47. https://doi.org/10.1063/PT.3.1886

    Article  Google Scholar 

  12. Mathur M, Haller G, Peacock T, Ruppert-Felsot JE, Swinney HL (2007) Uncovering the Lagrangian skeleton of turbulence. Phys Rev Lett 98:144502. https://doi.org/10.1103/PhysRevLett.98.144502

    Article  Google Scholar 

  13. Beron-Vera FJ, Wang Y, Olascoaga MJ, Goni GJ, Haller G (2013) Objective detection of oceanic eddies and the agulhas leakage. J Phys Oceanogr 43:1426–1438. https://doi.org/10.1175/JPO-D-12-0171.1

    Article  Google Scholar 

  14. Koh T-Y, Legras B (2002) Hyperbolic lines and the stratospheric polar vortex. Chaos An Interdiscip J Nonlinear Sci 12:382–394. https://doi.org/10.1063/1.1480442

    Article  Google Scholar 

  15. Lekien F, Coulliette C, Mariano AJ, Ryan EH, Shay LK, Haller G, Marsden J (2005) Pollution release tied to invariant manifolds: a case study for the coast of Florida. Phys D Nonlinear Phenom 210:1–20. https://doi.org/10.1016/j.physd.2005.06.023

    Article  Google Scholar 

  16. Allshouse MR, Ivey GN, Lowe RJ, Jones NL, Beegle-Krause CJ, Xu J, Peacock T (2017) Impact of windage on ocean surface Lagrangian coherent structures. Environ Fluid Mech 17:473–483. https://doi.org/10.1007/s10652-016-9499-3

    Article  Google Scholar 

  17. Ivić S, Mrša Haber I, Legović T (2017) Lagrangian coherent structures in the Rijeka bay current field. Acta Adriat. https://doi.org/10.32582/aa.58.3.1

    Article  Google Scholar 

  18. Fiorentino LA, Olascoaga MJ, Reniers A, Feng Z, Beron-Vera FJ, MacMahan JH (2012) Using Lagrangian coherent STRUCTURES to understand coastal water quality. Cont Shelf Res 47:145–149. https://doi.org/10.1016/j.csr.2012.07.009

    Article  Google Scholar 

  19. Bettencourt JH, López C, Hernández-García E (2012) Oceanic three-dimensional Lagrangian coherent structures: a study of a mesoscale eddy in the Benguela upwelling region. Ocean Model 51:73–83. https://doi.org/10.1016/j.ocemod.2012.04.004

    Article  Google Scholar 

  20. d’Ovidio F, Fernández V, Hernández-García E, López C (2004) Mixing structures in the Mediterranean Sea from finite-size Lyapunov exponents. Geophys Res Lett. https://doi.org/10.1029/2004GL020328

    Article  Google Scholar 

  21. Huhn F, Von Kameke A, Pérez-Muñuzuri V, Olascoaga M, Beron-Vera F (2012) The impact of advective transport by the South Indian Ocean Countercurrent on the Madagascar plankton bloom. Geophys Res Lett. https://doi.org/10.1029/2012GL051246

    Article  Google Scholar 

  22. Prants SV (2014) Chaotic Lagrangian transport and mixing in the ocean. Eur Phys J Spec Top 223:2723–2743. https://doi.org/10.1140/epjst/e2014-02288-5

    Article  Google Scholar 

  23. Giudici A, Suara KA, Soomere T, Brown R (2021) Tracking areas with increased likelihood of surface particle aggregation in the Gulf of Finland: a first look at persistent Lagrangian coherent structures (LCS). J Mar Syst 217:103514

    Article  Google Scholar 

  24. Ghosh A, Suara K, McCue SW, Yu Y, Soomere T, Brown RJ (2021) Persistency of debris accumulation in tidal estuaries using Lagrangian coherent structures. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2021.146808

    Article  Google Scholar 

  25. Huhn F, von Kameke A, Allen-Perkins S, Montero P, Venancio A, Pérez-Muñuzuri V (2012) Horizontal Lagrangian transport in a tidal-driven estuary: transport barriers attached to prominent coastal boundaries. Cont Shelf Res 39:1–13. https://doi.org/10.1016/j.csr.2012.03.005

    Article  Google Scholar 

  26. Hadjighasem A, Farazmand M, Blazevski D, Froyland G, Haller G (2017) A critical comparison of Lagrangian methods for coherent structure detection. Chaos Interdiscip J Nonlinear Sci 27:53104. https://doi.org/10.1063/1.4982720

    Article  Google Scholar 

  27. Haller G (2002) Lagrangian coherent structures from approximate velocity data. Phys fluids 14:1851–1861. https://doi.org/10.1063/1.1477449

    Article  Google Scholar 

  28. BozorgMagham AE, Ross SD (2015) Atmospheric Lagrangian coherent structures considering unresolved turbulence and forecast uncertainty. Commun Nonlinear Sci Numer Simul 22:964–979. https://doi.org/10.1016/j.cnsns.2014.07.011

    Article  Google Scholar 

  29. Miron P, Vétel J, Garon A, Delfour M, Hassan ME (2012) Anisotropic mesh adaptation on Lagrangian coherent structures. J Comput Phys 231:6419–6437. https://doi.org/10.1016/j.jcp.2012.06.015

    Article  Google Scholar 

  30. Allshouse MR, Peacock T (2015) Lagrangian based methods for coherent structure detection. Chaos An Interdiscip J Nonlinear Sci 25:97617. https://doi.org/10.1063/1.4922968

    Article  Google Scholar 

  31. Shadden SC, Lekien F, Paduan JD, Chavez FP, Marsden JE (2009) The correlation between surface drifters and coherent structures based on high-frequency radar data in Monterey Bay. Deep Sea Res Part II Top Stud Oceanogr 56:161–172. https://doi.org/10.1016/j.dsr2.2008.08.008

    Article  Google Scholar 

  32. Harrison CS, Glatzmaier GA (2012) Lagrangian coherent structures in the California Current System–sensitivities and limitations. Geophys Astrophys Fluid Dyn 106:22–44. https://doi.org/10.1080/03091929.2010.532793

    Article  Google Scholar 

  33. Suara KA, Khanarmuei M, Ghosh A, Yu Y, Zhang H, Soomere T, Brown RJ (2020) Material and debris transport patterns in Moreton Bay, Australia: the influence of Lagrangian coherent structures. Sci Total Environ 721:137715. https://doi.org/10.1016/j.scitotenv.2020.137715

    Article  Google Scholar 

  34. Onu K, Huhn F, Haller G (2015) LCS Tool: a computational platform for Lagrangian coherent structures. J Comput Sci 7:26–36. https://doi.org/10.1016/j.jocs.2014.12.002

    Article  Google Scholar 

  35. Jiang S, Jin F-F, Ghil M (1995) Multiple equilibria, periodic, and aperiodic solutions in a wind-driven, double-gyre, shallow-water model. J Phys Oceanogr 25:764–786. https://doi.org/10.1175/1520-0485(1995)025%3C0764:mepaas%3E2.0.co;2

    Article  Google Scholar 

  36. Jones DA, Poje AC, Margolin LG (1997) Resolution effects and enslaved finite-difference schemes for a double gyre, shallow-water model. Theor Comput fluid Dyn 9:269–280. https://doi.org/10.1007/s001620050044

    Article  Google Scholar 

  37. Shadden SC, Lekien F, Marsden JE (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys D Nonlinear Phenom 212:271–304. https://doi.org/10.1016/j.physd.2005.10.007

    Article  Google Scholar 

  38. Carlson DF, Fredj E, Gildor H, Rom-Kedar V (2010) Deducing an upper bound to the horizontal eddy diffusivity using a stochastic Lagrangian model. Environ Fluid Mech 10:499–520. https://doi.org/10.1007/s10652-010-9181-0

    Article  Google Scholar 

  39. Simpson JJ, Lynn RJ (1990) A mesoscale eddy dipole in the offshore California current. J Geophys Res Ocean 95:13009–13022. https://doi.org/10.1029/JC095iC08p13009

    Article  Google Scholar 

  40. Samelson RM, Wiggins S (2006) Lagrangian transport in geophysical jets and waves: the dynamical systems approach. Springer Sci Business Media. https://doi.org/10.1007/978-0-387-46213-4

    Article  Google Scholar 

  41. Duan J, Wiggins S (1996) Fluid exchange across a meandering jet with quasiperiodic variability. J Phys Oceanogr 26:1176–1188. https://doi.org/10.1175/1520-0485(1996)026%3C1176:FEAAMJ%3E2.0.CO;2

    Article  Google Scholar 

  42. Flierl GR, Malanotte-Rizzoli P, Zabusky NJ (1987) Nonlinear waves and coherent vortex structures in barotropic β-plane jets. J Phys Oceanogr 17:1408–1438. https://doi.org/10.1175/1520-0485(1987)017%3c1408:NWACVS%3e2.0.CO;2

    Article  Google Scholar 

  43. Ghosh A, Suara K, Yu Y, Brown RJ (2018) Using Lagrangian coherent structures to investigate tidal transport barriers in Moreton Bay, Queensland. In: Proceedings of the 21st Australasian Fluid Mechanics Conference (AFMC 2018), Adelaide, SA 1–4. https://eprints.qut.edu.au/123902/

  44. Haller G (2011) A variational theory of hyperbolic Lagrangian coherent structures. Phys D Nonlinear Phenom 240:574–598. https://doi.org/10.1016/j.physd.2010.11.010

    Article  Google Scholar 

  45. Haller G, Yuan G (2000) Lagrangian coherent structures and mixing in two-dimensional turbulence. Phys D Nonlinear Phenom 147:352–370. https://doi.org/10.1016/S0167-2789(00)00142-1

    Article  Google Scholar 

  46. Katsanoulis S, Haller G (2019) BarrierTool Manual. https://github.com/LCSETH

  47. Haller G, Beron-Vera FJ (2014) Addendum to ‘Coherent Lagrangian vortices: the black holes of turbulence.’ J Fluid Mech. https://doi.org/10.1017/jfm.2014.441

    Article  Google Scholar 

  48. Beron-Vera FJ, Olascoaga MJ, Wang Y, Triñanes J, Pérez-Brunius P (2018) Enduring Lagrangian coherence of a loop current ring assessed using independent observations. Sci Rep 8:1–12. https://doi.org/10.1038/s41598-018-29582-5

    Article  Google Scholar 

  49. Haller G, Beron-Vera FJ (2013) Coherent Lagrangian vortices: the black holes of turbulence. J Fluid Mech. https://doi.org/10.1017/jfm.2014.441

    Article  Google Scholar 

  50. Karrasch D, Huhn F, Haller G (2015) Automated detection of coherent Lagrangian vortices in two-dimensional unsteady flows. Proc R Soc A Math Phys Eng Sci 471:20140639. https://doi.org/10.1098/rspa.2014.0639

    Article  Google Scholar 

  51. Haller G, Beron-Vera FJ (2012) Geodesic theory of transport barriers in two-dimensional flows. Phys D Nonlinear Phenom 241:1680–1702. https://doi.org/10.1016/j.physd.2012.06.012

    Article  Google Scholar 

  52. Farahani RJ, Dalrymple RA (2014) Three-dimensional reversed horseshoe vortex structures under broken solitary waves. Coast Eng 91:261–279. https://doi.org/10.1016/j.coastaleng.2014.06.006

    Article  Google Scholar 

  53. Serra M, Haller G (2017) Efficient computation of null geodesics with applications to coherent vortex detection. Proc R Soc A Math Phys Eng Sci 473:20160807. https://doi.org/10.1098/rspa.2016.0807

    Article  Google Scholar 

  54. Olbert AI, Comer J, Nash S, Hartnett M (2017) High-resolution multi-scale modelling of coastal flooding due to tides, storm surges and rivers inflows. A Cork City example. Coast Eng 121:278–296. https://doi.org/10.1016/j.coastaleng.2016.12.006

    Article  Google Scholar 

  55. Ghosh A, Suara K, Brown RJ (2019) Lagrangian coherent structures in coastal waters: Sensitivities to interpolation schemes, and mesh resolution. E-proceedings 38th IAHR World Congr City, Panama. Doi: https://doi.org/10.3850/38wc092019-0729

  56. Read AL (1999) Linear interpolation of histograms. Nucl Instrum Methods Phys Res Sect Accel Spectrom Detect Assoc Equip 425:357–360. https://doi.org/10.1016/S0168-9002(98)01347-3

    Article  Google Scholar 

  57. Dyn N, Levin D, Rippa S (1990) Data dependent triangulations for piecewise linear interpolation. IMA J Numer Anal 10:137–154. https://doi.org/10.1093/imanum/10.1.137

    Article  Google Scholar 

  58. Hou H, Andrews H (1978) Cubic splines for image interpolation and digital filtering. IEEE Trans Acoust 26:508–517. https://doi.org/10.1109/TASSP.1978.1163154

    Article  Google Scholar 

  59. Boissonnat J-D, Cazals F (2002) Smooth surface reconstruction via natural neighbour interpolation of distance functions. Comput Geom 22:185–203. https://doi.org/10.1016/S0925-7721(01)00048-7

    Article  Google Scholar 

  60. Sandwell DT (1987) Biharmonic spline interpolation of GEOS-3 and SEASAT altimeter data. Geophys Res Lett 14:139–142. https://doi.org/10.1029/GL014i002p00139

    Article  Google Scholar 

  61. Olcay AB, Pottebaum TS, Krueger PS (2010) Sensitivity of Lagrangian coherent structure identification to flow field resolution and random errors. Chaos Interdiscip J Nonlinear Sci 20:17506. https://doi.org/10.1063/1.3276062

    Article  Google Scholar 

  62. Beron-Vera FJ, Olascoaga MJ (2009) An assessment of the importance of chaotic stirring and turbulent mixing on the West Florida Shelf. J Phys Oceanogr 39:1743–1755. https://doi.org/10.1175/2009JPO4046.1

    Article  Google Scholar 

  63. Haller G, Karrasch D, Kogelbauer F (2018) Material barriers to diffusive and stochastic transport. Proc Natl Acad Sci 115:9074–9079. https://doi.org/10.1073/pnas.1720177115

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor H. Zhang and Dr. Y. Yu for access to the hydrodynamic model and field data for Moreton Bay. The project is supported through the Australia Research Council Linkage Project grant LP150101172 and Discovery Project grant DP190103379. We thank the two anonymous reviewers for their helpful and constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anusmriti Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 466 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, A., Suara, K., McCue, S.W. et al. Sensitivity and robustness of Lagrangian coherent structures in coastal water systems. Environ Fluid Mech 21, 667–691 (2021). https://doi.org/10.1007/s10652-021-09792-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-021-09792-8

Keywords

Navigation