Skip to main content
Log in

A Conservative Linearly-Implicit Compact Difference Scheme for the Quantum Zakharov System

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

This paper is devoted to developing and analysing a highly accurate conservative method for solving the quantum Zakharov system. The scheme is based on a linearly-implicit compact finite difference discretization and conserve the mass as well as energy in discrete level. Detailed numerical analysis is presented which shows the method is fourth-order accurate in space and second-order accurate in time. Several numerical examples are reported to confirm the conservation properties and high accuracy of the proposed scheme. Finally the compact scheme is applied to study the convergence rate of the quantum Zakharov system to its limiting model in the semi-classical limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bao, W., Su, C.: Uniform error bounds of a finite difference method for the Zakharov system in the subsonic limit regime via an asymptotic consistent formulation. Multiscale Model. Simul. 15, 977–1002 (2017)

    Article  MathSciNet  Google Scholar 

  2. Bao, W., Su, C.: A uniformly and optically accurate method for the Zakharov system in the subsonic limit regime. SIAM J. Sci. Comput. 40, A929–A953 (2018)

    Article  MATH  Google Scholar 

  3. Bao, W., Sun, F.: Efficient and stable numerical methods for the generalized and vector Zakharov system. SIAM J. Sci. Comput. 26(3), 1057–1088 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bao, W., Sun, F., Wei, G.W.: Numerical methods for the generalized Zakharov system. J. Comput. Phys. 190, 201–228 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cai, Y., Yuan, Y.: Uniform error estimates of the conservative finite difference method for the Zakharov system in the subsonic limit regime. Math. Comput. 87, 1191–1225 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang, Q., Guo, B., Jiang, H.: Finite difference method for generalized Zakharov equations. Math. Comput. 64(210), 537–553 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  7. Choi, B.J.: Global well-posedness of the adiabatic limit of quantum Zakharov system in 1D (2019). arXiv:1906.10807v2

  8. Choi, B.J.: Multilinear weighted estimates and quantum Zakharov system (2020). arXiv: 2004.08952v1

  9. Davydov, A.S.: Solitons in molecular systems. Phys. Scr. 20, 387–394 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  10. Degtyarev, L.M., Nakhankov, V.G., Rudakov, L.I.: Dynamics of the formation and interaction of Langmuir solitons and strong turbulence. Sov. Phys. JETP 40, 264–268 (1974)

    Google Scholar 

  11. Dehghan, M., Abbaszadeh, M.: Numerical investigation based on direct meshless local Petrov Galerkin (direct MLPG) method for solving generalized Zakharov system in one and two dimensions and generalized Gross–Pitaevskii equation. Eng. Comput. 33(4), 983–996 (2017)

    Article  Google Scholar 

  12. Dehghan, M., Abbaszadeh, M.: Solution of multi-dimensional Klein–Gordon–Zakharov and Schrödinger/Gross–Pitaevskii equations via local radial basis functions-differential quadrature (RBF-DQ) technique on non-rectangular computational domains. Eng. Anal. Bound. Elem. 92, 156–170 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dehghan, M., Mohammadi, V.: Two numerical meshless techniques based on radial basis functions (RBFs) and the method of generalized moving least squares (GMLS) for simulation of coupled Klein–Gordon–Schrödinger (KGS) equations. Comput. Math. Appl. 71(4), 892–921 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dehghan, M., Mohammadi, V.: A numerical scheme based on radial basis function finite difference (RBF-FD) technique for solving the high-dimensional nonlinear Schrödinger equations using an explicit time discretization: Runge–Kutta method. Comput. Phys. Commun. 217, 23–34 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dehghan, M., Mohebbi, A., Asgari, Z.: Fourth-order compact solution of the nonlinear Klein–Gordon equation. Numer. Algorithm 52, 523–540 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dehghan, M., Nikpour, A.: The solitary wave solution of coupled Klein–Gordon–Zakharov equations via two different numerical methods. Comp. Phys. Commun. 184(9), 2145–2158 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fang, Y., Kuo, H., Shih, H., Wang, K.: Semi-classical limit for the quantum Zakharov system. Taiwan. J. Math. 23(4), 925–949 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fang, Y., Nakanishi, K.: Global well-posedness and scattering for the quantum Zakharov system in \(L^2\). Proc. Am. Math. Soc. 6, 21–32 (2019)

    Article  MATH  Google Scholar 

  19. Fang, Y., Segata, J., Wu, T.: On the standing waves of quantum Zakharov system. J. Math. Anal. Appl. 458, 1427–1448 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fang, Y., Shih, H., Wang, K.: Local well-posedness for the quantum Zakharov system in one spatial dimension. J. Hyperbolic Differ. Equ. 14(01), 157–192 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Feng, Y.: Long time error analysis of the fourth-order compact finite difference methods for the nonlinear Klein–Gordon equation with weak nonlinearity. Numer. Methods Partial Differ. Equ. 37(1), 897–914 (2021)

  22. Garcia, L.G., Haas, F., de Oliveira, L.P.L., Goedert, J.: Modified Zakharov equations for plasmas with a quantum correction. Phys. Plasmas 12(1), 012302 (2005)

    Article  Google Scholar 

  23. Glangetas, L., Merle, F.: Existence of self-similar blow-up solutions for Zakharov equation in dimension two I. Commun. Math. Phys. 160, 173–215 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Glassey, R.T.: Convergence of energy-preserving scheme for the Zakharov equations in one space dimension. Math. Comput. 58, 83–102 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Guo, B., Gan, Z., Kong, L., Zhang, J.: The Zakharov System and Its Soliton Solutions. Science Press, Beijing (2016)

    Book  MATH  Google Scholar 

  26. Guo, Y., Zhang, J., Guo, B.: Global well-posedness and the classical limit of the solution for the quantum Zakharov system. Z. Angew. Math. Phys. 64(1), 53–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Haas F.: Quantum Plasmas. Springer Series on Atomics, Optical and Plasma Physics, vol. 65 (2011)

  28. Haas, F., Shukla, P.K.: Quantum and classical dynamics of Langmuir wave packets. Phys. Rev. E 79(6), 066402 (2009)

    Article  Google Scholar 

  29. Hu, X., Zhang, L.: Conservative compact difference schemes for the coupled nonlinear Schrödinger system. Numer. Methods Partial Differ. Equ. 30, 749–772 (2014)

    Article  MATH  Google Scholar 

  30. Jiang, J.C., Lin, C.K., Shao, S.: On one dimensional quantum Zakharov system. Discrete Contin. Dyn. Syst. 36(10), 5445–5475 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jin, S., Markowich, P.A., Zheng, C.: Numerical simulation of a generalized Zakharov system. J. Comput. Phys. 201, 376–395 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Lee, S., Shin, J.: Energy stable compact scheme for Cahn–Hilliard equation with periodic boundary condition. Comput. Math. Appl. 77(1), 189–198 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  33. Li, J., Sun, Z., Zhao, X.: A three level linearized compact difference scheme for the Cahn–Hilliard equation. Sci. China Math. 55(04), 805–826 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Misra, A.P., Banerjee, S., Haas, F., Shukla, P.K., Assis, L.P.G.: Temporal dynamics in the one-dimensional quantum Zakharov equations for plasmas. Phys. Plasmas 17(3), 032307 (2010)

    Article  Google Scholar 

  35. Misra, A.P., Ghosh, D., Chowdhury, A.R.: A novel hyperchaos in the quantum Zakharov system for plasmas. Phys. Lett. A 372(9), 1469–1476 (2008)

    Article  MATH  Google Scholar 

  36. Misra, A.P., Shukla, P.K.: Pattern dynamics and spatiotemporal chaos in the quantum Zakharov equations. Phys. Rev. E 79(5), 056401 (2009)

    Article  Google Scholar 

  37. Mohebbi, A., Abbaszadeh, M., Dehghan, M.: Compact finite difference scheme and RBF meshless approach for solving 2D Rayleigh–Stokes problem for a heated generalized second grade fluid with fractional derivatives. Comput. Methods Appl. Mech. Eng. 264, 163–177 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  38. Pan, X., Zhang, L.: On the convergence of a high-accuracy conservative scheme for the Zakharov equations. Appl. Math. Comput. 297, 79–91 (2017)

    MathSciNet  MATH  Google Scholar 

  39. Sun, Q., Zhang, L., Wang, S., Hu, X.: A conservative compact difference scheme for the coupled Klein–Gordon–Schrödinger equation. Numer. Methods Partial Differ. Equ. 29, 1657–1674 (2013)

    Article  MATH  Google Scholar 

  40. Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (1997)

    Book  MATH  Google Scholar 

  41. Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference scheme for the nonlinear Schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  42. Wang, T., Zhang, L., Jiang, Y.: Convergence of an efficient and compact finite difference scheme for the Klein–Gordon–Zakharov equation. Appl. Math. Comput. 221, 433–443 (2013)

    MathSciNet  MATH  Google Scholar 

  43. Xiao, A., Wang, C., Wang, J.: Conservative linearly-implicit difference scheme for a class of modified Zakharov systems with high-order space fractional quantum correction. Appl. Numer. Math. 146, 379–399 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  44. Xie, S., Li, G., Yi, S.: Compact finite difference schemes with high accuracy for one-dimensional nonlinear Schrödinger equation. Comput. Methods Appl. Mech. Eng. 198, 1052–1060 (2009)

    Article  MATH  Google Scholar 

  45. Yao, S., Sun, J., Wu, T.: Stationary quantum Zakharov systems involving a higher competing perturbation. Electron. J. Differ. Equ. 2020(6), 1–18 (2020)

    MathSciNet  MATH  Google Scholar 

  46. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35(5), 908–914 (1972)

    Google Scholar 

  47. Zhou, Y.: Application of Discrete Functional Analysis to the Finite Difference Method. Inter Academy Publishers, Beijing (1990)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the anonymous referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunmei Su.

Ethics declarations

Conflict of interest

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work is supported by the National Natural Science Foundation of China (Grant No. 11701110), the China Postdoctoral Science Foundation (Grant No. 2020M682746) (G. Zhang), and the Alexander von Humboldt Foundation (C. Su).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Su, C. A Conservative Linearly-Implicit Compact Difference Scheme for the Quantum Zakharov System. J Sci Comput 87, 71 (2021). https://doi.org/10.1007/s10915-021-01482-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-021-01482-3

Keywords

Mathematics Subject Classification

Navigation