Skip to main content
Log in

Investigation of optoelectronic properties of AgIn1−xGaxY2 (Y = Se, Te) semiconductors

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The electronic structure and optical properties of AgIn1−xGaxY2 (Y = Se, Te) are investigated using first-principles calculations based on density functional theory. Both the local density approximation (LDA) and generalized gradient approximation (GGA) are employed in the calculation. The crystal structure of ternary semiconductors is the tetragonal chalcopyrite structure with space group \({\text{I}}\overline{{4}} {\text{2d}}\). The lattice parameters a(Å) and c(Å) are found to vary with the change in Ga composition. The energy gap across the Fermi level in the density of states plots shows that these materials are semiconductors. To compute accurate energy gap values, the LDA + U method is adopted. The calculated elastic constants indicate that these compounds are mechanically stable at normal pressure. The semiconducting nature of these materials may prove their applications in solar cells and photovoltaic absorbers. The optical parameters such as dielectric function, electron energy loss function, refractive index and reflectivity are computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W Wu, K Wu, Z Ma and R Sa Chem. Phys. Lett. 537 62 (2012).

    Article  ADS  Google Scholar 

  2. S N Raskeev and W R L Lambrecht Phys. Rev. B 63 165212 (2001).

    Article  ADS  Google Scholar 

  3. A S Verma Phil. Mag. B 89 183 (2009).

    Article  Google Scholar 

  4. B Tell, J L Shay and H M Kasper Phys. Rev. B 12 5203 (1974).

    Article  ADS  Google Scholar 

  5. J Lazewski and K Parlinskin J. Phys.: Condens. Matter. 11 9673 (1999).

    ADS  Google Scholar 

  6. R Ashokamani, R M Amirthakumari, R Rita and C Ravi Phys. Status Solidi. B 213 349 (1999).

    Article  ADS  Google Scholar 

  7. A V Kopytov and A V Kosobutsky Phys. Solid State 52 1359 (2010).

    Article  ADS  Google Scholar 

  8. A V Kopytov and A V Kosobutsky Phys. Solid State 51 2115 (2009).

    Article  ADS  Google Scholar 

  9. S Arai, S Ozaki and S Adachi Appl. Opt. 49 829 (2010).

    Article  ADS  Google Scholar 

  10. Y Aikebaier, K Kurosaki, T Sugahara, Y Ohishi, H Muta and S Yamanaka Mater. Sci. Eng. B 177 999 (2012).

    Article  Google Scholar 

  11. S Ullah, H U Din, G Murtaza, T Ouahrani and R Khenata Naeemullah and S Bin Omran J. Alloys Compd. 617 575 (2014).

    Article  Google Scholar 

  12. S Sharma, A S Verma and V K Jindal Mater. Res. Bull. 53 218 (2014).

    Article  Google Scholar 

  13. S R Zhang, L H Xie, X W Chen, Z G Shi and K H Song Chalcogenide Lett. 11 373 (2014).

    Google Scholar 

  14. K Kotmool, T Bovornratanaraks and K Yoodee Solid State Commun. 220 25 (2015).

    Article  ADS  Google Scholar 

  15. H Salehi and E Gordanian Mater. Sci. Semi-cond. Process. 47 51 (2016).

    Article  Google Scholar 

  16. V Kumar and B P Singh Ind. J. Phys. 92 29 (2018).

    Article  Google Scholar 

  17. M Diaz, L M D Chalbaud, V Sagredo, T Tinoco and C Pineda Phys. Status Solidi B 220 281 (2000).

    Article  ADS  Google Scholar 

  18. A M Moustafa, E A E Sayad and G B Sakr Cryst. Res. Technol. 39 266 (2004).

    Article  Google Scholar 

  19. A H Reshak Physica B 369 243 (2005).

    Article  ADS  Google Scholar 

  20. A Chahed, O Benhelal, S Laksari, B Abbar, B Bouhafs and N Amrane Phy. Stat. Sol. B 367 142 (2005).

    Google Scholar 

  21. A Chahed, O Benhelal, H Rozale, S Laksari and N Abbouni Phys. Stat. Sol. B 244 629 (2007).

    Article  ADS  Google Scholar 

  22. S Sharma, A S Verma and V K Jindal Physica B 438 97 (2014).

    Article  ADS  Google Scholar 

  23. H Xiao, J T Kheli and W A Goddard J. Phys. Chem. Lett. 2 212 (2011).

    Article  Google Scholar 

  24. I V Bodnar Inorg. Mater. 40 914 (2004).

    Article  Google Scholar 

  25. H Newman Phys. Stat. Sol. A 96 K121 (1986).

    Article  ADS  Google Scholar 

  26. T Ouahrani et al. Physica B 405 3658 (2010).

    Article  ADS  Google Scholar 

  27. K Koitabashi, S Ozaki and S Adachi J. Appl. Phys. 107 053516 (2010).

    Article  ADS  Google Scholar 

  28. H J Hou, F J Kong, J W Yang, L H Xie and S X Yang Phys. Scr. 89 065703 (2014).

    Article  ADS  Google Scholar 

  29. J L Shay, B Tell, R M Kasper and L M Schiavome Phys. Rev. B 7 4485 (1973).

    Article  ADS  Google Scholar 

  30. J L Shay, B Tell, R M Kasper and L M Schiavome Phys. Rev. B 5 5003 (1972).

    Article  ADS  Google Scholar 

  31. G Kresse and J Furthmuller Comput. Mat. Sci. 6 15 (1996).

    Article  Google Scholar 

  32. G Kresse and J Furthmuller Phys. Rev. B 54 11169 (1996).

    Article  ADS  Google Scholar 

  33. P E Blochl Phys. Rev. B 50 17953 (1994).

    Article  ADS  Google Scholar 

  34. J P Perdew and A Zunger Phys. Rev. B 23 5048 (1981).

    Article  ADS  Google Scholar 

  35. J Perdew et al. Phys. Rev. B 46 6671 (1992).

    Article  ADS  Google Scholar 

  36. H J Monkhorst and J D Pack Phys. Rev. B 13 5188 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  37. J Hyed and G E Scuseria J. Chem. Phys. 121 1187 (2004).

    Article  ADS  Google Scholar 

  38. F Birch Phys. Rev. 71 809 (1947).

    Article  ADS  Google Scholar 

  39. F D Murnaghan Proc. Natl. Acad. Sci. A 30 244 (1944).

    Article  ADS  Google Scholar 

  40. P Vajeeston and P Ravindran R Vidya H F jellvag and A Kjekshu Phys. Rev. B 68 212101 (2003).

    Article  ADS  Google Scholar 

  41. M Born Dynamical Theory of Crystal Lattices. (Oxford: Clarendon)) (1956)

    MATH  Google Scholar 

  42. W Voigt Lehrbuch de Kristallphysik. (Leipzig: Terubner) (1928)

    MATH  Google Scholar 

  43. A Reuss and Z Angew Math. Mech. 9 49 (1929).

    Google Scholar 

  44. R Hill Proc. Phys. Soc. London A 65 349 (1952).

    Article  ADS  Google Scholar 

  45. V V Bannikov, I R Shein and A L Ivanovskii Phys. Stat. Sol. (RRL) 3 89 (2007).

    Article  Google Scholar 

  46. S F Pugh Philos. Mag. 45 823 (1954).

    Article  Google Scholar 

  47. V Kumar, A K Shrivastava, R Banerji and D Dhirhe Solid State Commun. 149 1008 (2009).

    Article  ADS  Google Scholar 

  48. H A Kramers AttiCongr. Int. Fis (Transactions of Volta Centenary Congress) 2 545 (1927).

    Google Scholar 

  49. R Kronig and L De J. Opt. Soc. Am. 12 547 (1926).

    Article  ADS  Google Scholar 

  50. K E Babu, A Veeraiah, D T Swamy and V Veeraiah Mate. Sci.—Poland 30 359 (2012).

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the college management for their constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajeswarapalanichamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmavathy, R., Amudhavalli, A., Rajeswarapalanichamy, R. et al. Investigation of optoelectronic properties of AgIn1−xGaxY2 (Y = Se, Te) semiconductors. Indian J Phys 96, 1357–1379 (2022). https://doi.org/10.1007/s12648-021-02081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02081-6

Keywords

Navigation