Skip to main content
Log in

Monitoring microbial growth on a microfluidic lab-on-chip with electrochemical impedance spectroscopic technique

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

A continuous rise in the wastes from industrial effluents, bio-waste, and pharmaceuticals has deteriorated surface water and drinking water sources. Standard laboratory tests of total coliform are time-consuming and logistically inefficient for field data generation. Better and portable sensing technologies are needed. This paper reports an electrical impedance spectroscopic technique incorporated in a micro-fluidic chip with interdigitated microelectrodes to monitor the growth of microbial cells. Lag, log, and stationary phases of Escherichia coli cell growth with an integrated electrode are successfully detected, for samples of reverse osmosis water, standard treated tap water, and recycled water respectively. The results indicate that reverse osmosis water has a higher probability of contamination with bacterial pathogens compared to the other two types of water samples when subjected to the same amount of added nutrients. The statistical analysis shows a possible single detection range with higher-order regression, and repeat use of a single chip with the electrode was found to be within an acceptable limit. The interdigitated electrodes exposed to in-situ cell growth conditions and repeated electrical measurements have shown a promise for possible periodic or continuous monitoring. The paper further identifies several complimentary analysis methodologies that are robust towards phase noise in the measured impedance and are suited particularly for early-stage detection of bacterial contamination. The cell adhesion tendencies over the microelectrode due to the electric field need to be further analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statements

The datasets used and/or analyzed during the current study are available from the corresponding author on request.

References

  • N.J. Ashbolt, W.O.K. Grabow, M. Snozzi, World Health Organization, (2001)

  • E. Bancalari, V. Bernini, B. Bottari, E. Neviani, M. Gatti, Front. Microbiol. 7, 1628 (2016)

    Article  Google Scholar 

  • J.R. Barrett, Chemical contaminants in drinking water: where do we go from here?, A80-A80 (2014)

  • J. Bartram, S. Pedley, United Nations Environment Programme, and the WORLD Health Organization (1996)

  • B.L. Batzing, Microbiology: An Introduction, (Brooks/Cole, 2002)

  • H. Ben-Yoava, A. Freeman, M. Sternheim, Yosi Shacham-Diamand. Electrochim. Acta 56, 7780–7786 (2011)

    Article  Google Scholar 

  • A. Biscotti, R. Lazzarinia, G. Virgillia, F. Ngatcha, A. Valisi, M. Rossi, 18(1–6), (2018)

  • S. Brosel-Oliu,  N. Uria, N. Abramova, A. Bratov, IntechOpen (2015)

  • V. Chander, B. Sharma, V. Negi et al., J Xenobiot 6(1), 5774 (2016)

    Google Scholar 

  • C.H. Clausen, M. Dimaki, C.V. Bertelsen, G.E. Skands, R. Rodriguez-Trujillo, J.D. Thomsen, W.E. Svendsen, Sensors (Basel, Switzerland), 18(10), 3496 (2018)

  • M.S. Curiale, W. Lepper, B. Robison, J. AOAC Int. 77(6), 1472–1489 (1993)

    Article  Google Scholar 

  • R. Eden, G. Eden, Impedance Microbiology (Research Studies Press Ltd., Herts, UK, 1984)

    Google Scholar 

  • R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, K. Stegbauer, B. Wolf, Biosens. Bioelectrons. 12(1), 29–41 (1997)

    Article  Google Scholar 

  • R. Ehret, W. Baumann, M. Brischwein, A. Schwinde, B. Wolf, Med. Biol. Eng. Comput. 36, 365–370 (1998)

    Article  Google Scholar 

  • M.C. Enright, B.G. Spratt, Trends Microbiol. 7(12), 482–487 (1999)

    Article  Google Scholar 

  • P.T. Feldsine, A.H.Lienau, R.L. Forgey, R.D. Calhoon. J. AOAC Int. 80(4), 775–790 (1996)

    Article  Google Scholar 

  • D.M. Gibson, P. Coombs, D.W. Pimbley, J AOAC Int 75, 293–302 (1992)

    Article  Google Scholar 

  • P.H. Gleick, Pacific Institute Research Report, August 15, (2002)

  • M. Grossi, B. Riccò, Journal of Senor and Sensor systems 6, 303–325 (2017a)

    Article  Google Scholar 

  • M. Grossi, B. Riccò, Parolin C (Vitali B, Sensors and Interfaces, 2017), pp. 246–251

    Google Scholar 

  • L.L. Hause, R.A. Komorowski, F. Gayon, IEEE Trans Biomed Eng 28, 403–410 (1981)

    Article  Google Scholar 

  • D. Ivnitsk, I. Abdel-Hamid, P. Atanasov, E. Wilkins, BiosensBioelectron 14, 599–624 (1999)

    Article  Google Scholar 

  • Y. Iwasaki, M. Morita, Curr. Sep. 14, 1–8 (1995)

    Google Scholar 

  •  A.K. Järvinen, S. Laakso, P. Piiparinen, A.Aittakorpi, M. Lindfors, L. Huopaniemi, H. Piiparinen,M. Mäki et al., BMC microbiology 9(1), 1 (2009).

  • W. Laureyn, F. Frederix, P. Van Gerwen, G. Maes, Transducers’99, Digest of Technical papers, Sendai, Japan, 7–10 June 1884–1885 (1999a)

  • W. Laureyn, D. Nelis, P. Van Gerwen, K. Baert, L. Hermans, R. Magnee, J.J. Pireaux, G. Maes, Sens. Actuat. B 68(1–3), 360–370 (2000)

    Article  Google Scholar 

  •  W. Laureyn, D. Nelis , P. Van Gerwen, K. Baert, L. Hermans, G. Maes, Eurosensors XIII, In: Proceedings of the 13th European Conference on Solid-State Transducers, 12–15 September, Hague, The Netherland (1999b)

  • G. Liu, Ya. Zhang, W.-J. Knibbe, C. Feng, WentsoLiu, Gertjan Medema, Walter van der Meer. Water Res. 116, 135–148 (2017)

    Article  Google Scholar 

  • M.C.Maiden, J.A.Bygraves, E.Feil E, G.Morelli, J.E.Russell, R.Urwin ,Q.Zhang, J. Zhou, K.Zurth, D.A.Caugant, I.M. Feavers, M.Achtman , B.G.Spratt BG. Proc. Natl. Acad. Sci. 95(6), 3140–3145 (1998)

    Article  Google Scholar 

  • M. Maurin, Expert Rev. Mol. Diagn. 1(27), 731–754 (2012)

    Article  Google Scholar 

  • M. Mallén-Alberdi, N. Vigués, J. Mas, C. Fernández-Sánchez, Antonio Baldi. Sensing and Bio-Sensing Research 7, 100–106 (2016)

    Article  Google Scholar 

  • S.L.R.K.Kanamarlapudi, V.K.Chintalpudi, S.Muddada IntechOpen, DOI: 10.5772/intechopen.77315. (2018)

    Article  Google Scholar 

  • H.P.T. Nguyen ,  M. Tonezzer, T. Dang, Q Vu, Q. Tran,  D. Nguyen, V. Nguyen, J Nanomater, ID 2341268 (2019)

  • J. Owicki, J. Parce, Biosens Bioelectron 7, 257–272 (1992)

    Article  Google Scholar 

  • M. Patel, R. Kumar, K. Kishor, T. Mlsna, C. U. Pittman Jr., Mohan D. 119(6) 3510 3673 (2019 )

  • A. Rahman, T.S. Bonny,  S. Stonsaovapak, C. Ananchaipattana, J  Pathogens 239391 (2011)

  • G. Rosati, A. Cunego, F. Fracchetti, A.D. Casale, M. Scaramuzza, A. De Toni, S. Torriani, A. Paccagnella, Chemosensors 7, 8 (2019)

    Article  Google Scholar 

  • P. Silley, S. Forsythe, J. Appl. Bacteriol. 80, 233–243 (1996)

    Article  Google Scholar 

  • R. Torre, E. Costa-Rama, H. Nouws, C. Delerue-Matos, Biosensors 10, 139 (2020)

    Article  Google Scholar 

  • R. Wang, J. Lum, Z. Callaway, J. Lin, W. Bottje, Y. Li, Biosensors 5, 791–803 (2015)

    Article  Google Scholar 

  • M. Wawerla, A. Stolle, B. Schalch, H. Eisgruber, J. Food Prot. 62, 1488–1496 (1999)

    Article  Google Scholar 

  • M. Xu, R. Wanga, Y. Li, Analyst 141, 5441–5449 (2016)

    Article  Google Scholar 

  • L. Yang, P.P. Banada, M.R. Chatni, K.S. Lim, A.K. Bhunia, M. Ladisch et al., Lab Chip 6, 896–905 (2006)

    Article  Google Scholar 

  • L. Yang, Y. Li, C.L. Griffis, M.G. Johnson, Biosens Bioelectron 19, 1139–1147 (2004a)

    Article  Google Scholar 

  • L. Yang, Y. Li, G.F. Erf, Anal Chem 76, 1107–1113 (2004b)

    Article  Google Scholar 

  • L. Yang, Y.J. Li, Microbiol Methods. 64, 9–16 (2006)

    Article  Google Scholar 

  • L. Yang, C. Ruan, Y. Li, Biosens Bioelectron 19, 495–502 (2003)

    Article  Google Scholar 

  • M. Zarabadi, F. Paquet-Mercier, S.J. Charette, J.G., Langmuir, (2017). https://doi.org/10.1021/acs.langmuir.6b03889

  • S.N. Zulkifli, H.A. Rahim, W.J. Lau, Sens. Actuators, B Chem. 255, 2657–2689 (2018)

    Article  Google Scholar 

Download references

Acknowledgments

Authors thankfully acknowledge the financial support under the Indo-German Science and Technology Centre (IGSTC) through the 2+2 project IDC-Water academic partner grant SP/IGST-18-0002 awarded to the Indian Institute of Science to carry out this research; The Authors would like to thank Pooja Murthy for carrying out and assisting with microbial cell culture, Dr. J Manjula, Bigtec Lab Bangalore, India, and Dr. Rudolf Schneider, BAM Berlin for technical suggestion regarding applications of the proposed technique.

Funding

The funding bodies had no role in the design of the study and collection, analysis, and interpretation of data and in writing the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Methodology, Investigation, Validation, Resources, Writing – Review and Editing, Visualization: Subhan Shaik., Sample preparation: Aarthi Saminathan; Methodology, Validation, Formal analysis, Investigation, Writing – Original draft preparation, Visualization: Deepak Sharma; Data analysis, algorithm development: Jagdish A Krishnaswamy; Conceptualization, Writing – Review and Editing, Supervision, Project administration, and Fund acquisition: D. Roy Mahapatra.

Corresponding author

Correspondence to D Roy Mahapatra.

Ethics declarations

Consent to participate

Person’s data in any form of data, videos, or images

Consent for publication

Does not apply to the study.

Competing interests/Conflict of interest

The authors declare that they have no financial or non-financial competing interests.

Research involving human and animal participants

No animal or human data, participants, tissue samples were involved.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, S., Saminathan, A., Sharma, D. et al. Monitoring microbial growth on a microfluidic lab-on-chip with electrochemical impedance spectroscopic technique. Biomed Microdevices 23, 26 (2021). https://doi.org/10.1007/s10544-021-00564-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10544-021-00564-1

Keywords

Navigation