Skip to main content

Advertisement

Log in

Maximum effect of the heterogeneity of tissue mineralization on the effective cortical bone elastic properties

  • Original Paper
  • Published:
Biomechanics and Modeling in Mechanobiology Aims and scope Submit manuscript

Abstract

The mineralization level is heterogeneous in cortical bone extracellular matrix as a consequence of remodeling. Models of the effective elastic properties at the millimeter scale have been developed based on idealizations of the vascular pore network and matrix properties. Some popular models do not take into account the heterogeneity of the matrix. However, the errors on the predicted elasticity when the difference in elastic properties between osteonal and interstitial tissues is not modeled have not been quantified. This work provides an estimation of the maximum error. We compare the effective elasticity of a representative volume element (RVE) assuming (1) different elastic properties in osteonal and interstitial tissues vs. (2) average matrix properties. In order to account for the variability of bone microstructure, we use a collection of high resolution images of the pore network to build RVEs. In each RVE we assumed a constant osteonal wall thickness and we artificially varied this thickness between 35 and 140 \(\upmu\)m to create RVEs with different amounts of osteonal tissue. The homogenization problem was solved with a fast Fourier transform (FFT)-based numerical scheme. We found that the error depends on pore volume fraction and varies on average from 1 to \(7\%\) depending on the assumed diameter of the osteons. The results suggest that matrix heterogeneity may be disregarded in cortical bone models in most practical cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Baumann AP, Deuerling JM, Rudy DJ, Niebur GL, Roeder RK (2012) The relative influence of apatite crystal orientations and intracortical porosity on the elastic anisotropy of human cortical bone. J Biomech 45(16):2743–2749

    Article  Google Scholar 

  • Blanchard R, Dejaco A, Bongaers E, Hellmich C (2013) Intravoxel bone micromechanics for microCT-based finite element simulations. J Biomech 46(15):2710–2721

    Article  Google Scholar 

  • Boivin G, Meunier PJ (2002) Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res 43(2–3):535–537

    Article  Google Scholar 

  • Britz HM, Thomas CDL, Clement JG, Cooper DM (2009) The relation of femoral osteon geometry to age, sex, height and weight. Bone 45:77–83

    Article  Google Scholar 

  • Broz JJ, Simske SJ, Greenberg AR (1995) Material and compositional properties of selectively demineralized cortical bone. J Biomech 28(11):1357–1368

    Article  Google Scholar 

  • Cai X, Peralta L, Gouttenoire P-J, Olivier C, Peyrin F, Laugier P, Grimal Q (2017) Quantification of stiffness measurement errors in resonant ultrasound spectroscopy of human cortical bone. J Acoustical Soc Am 142(5):2755–2765

    Article  Google Scholar 

  • Cai X, Brenner R, Peralta L, Olivier C, Gouttenoire P-J, Chappard C, Peyrin F, Cassereau D, Laugier P, Grimal Q (2019a) Homogenization of cortical bone reveals that the organization and shape of pores marginally affect elasticity. J R Soc Interface 16:20180911

    Article  Google Scholar 

  • Cai X, Follet H, Peralta L, Gardegaront M, Farlay D, Gauthier R, Yu B, Gineyts E, Olivier C, Langer M, Gourrier A, Mitton D, Peyrin F, Grimal Q, Laugier P (2019b) Anisotropic elastic properties of human femoral cortical bone and relationships with composition and microstructure in elderly. Acta Biomater 90:254–266

    Article  Google Scholar 

  • Cai X, Peralta L, Brenner R, Iori G, Cassereau D, Raum K, Laugier P, Grimal Q (2020) Anisotropic elastic properties of human cortical bone tissue inferred from inverse homogenization and resonant ultrasound spectroscopy. Materialia 11:100730

    Article  Google Scholar 

  • Colabella L, Ibarra Pino AA, Ballarre J, Kowalczyk P, Cisilino AP (2017) Calculation of cancellous bone elastic properties with the polarization-based FFT iterative scheme. Int J Numer Method Biomed Eng 33:e2879

    Article  MathSciNet  Google Scholar 

  • Cooper DML, Thomas CDL, Clement JG, Turinsky AL, Sensen CW, Hallgrimsson B (2007) Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone 40(4):957–965

    Article  Google Scholar 

  • Crolet JM, Aoubiza B, Meunier A (1993) Compact bone: numerical simulation of mechanical characteristics. J Biomech 26(6):677–87

    Article  Google Scholar 

  • Dong XN, Guo XE (2006) Prediction of cortical bone elastic constants by a two-level micromechanical model using a generalized self-consistent method. J Biomech Eng Trans Asme 128(3):309–316

    Article  Google Scholar 

  • Engelke K, van Rietbergen B, Zysset P (2016) FEA to measure bone strength: a review. Clin Rev Bone Mineral Metabolism 14(1):26–37

    Article  Google Scholar 

  • Gagliardi D, Naili S, Desceliers C, Sansalone V (2017) Tissue mineral density measured at the sub-millimetre scale can provide reliable statistics of elastic properties of bone matrix. Biomech Model Mechanobiol 16(6):1885–1910

    Article  Google Scholar 

  • Gagliardi D, Sansalone V, Desceliers C, Naili S (2018) Estimation of the effective bone-elasticity tensor based on \(\mu\)CT imaging by a stochastic model. A multi-method validation. Eur J Mech A Solids 69:147–167

    Article  MathSciNet  MATH  Google Scholar 

  • Gauthier R, Follet H, Olivier C, Mitton D, Peyrin F (2019) 3D analysis of the osteonal and interstitial tissue in human radii cortical bone. Bone 127:526–536

    Article  Google Scholar 

  • Granke M, Grimal Q, Parnell WJ, Raum K, Gerisch A, Peyrin F, Saïed A, Laugier P (2015) To what extent can cortical bone millimeter-scale elasticity be predicted by a two-phase composite model with variable porosity? Acta Biomater 12(C):207–215

    Article  Google Scholar 

  • Granke M, Grimal Q, Saïed A, Nauleau P, Peyrin F, Laugier P (2011) Change in porosity is the major determinant of the variation of cortical bone elasticity at the millimeter scale in aged women. Bone 49(5):1020–1026

    Article  Google Scholar 

  • Grimal Q, Raum K, Gerisch A, Laugier P (2008) Derivation of the mesoscopic elasticity tensor of cortical bone from quantitative impedance images at the micron scale. Comput Methods Biomech Biomed Eng 11(2):147–157

    Article  Google Scholar 

  • Grimal Q, Raum K, Gerisch A, Laugier P (2011a) A determination of the minimum sizes of representative volume elements for the prediction of cortical bone elastic properties. Biomech Model Mechanobiol 10(6):925–937

    Article  Google Scholar 

  • Grimal Q, Rus G, Parnell WJ, Laugier P (2011b) A two-parameter model of the effective elastic tensor for cortical bone. J Biomech 44(8):1621–1625

    Article  Google Scholar 

  • Hamed E, Lee Y, Jasiuk I (2010) Multiscale modeling of elastic properties of cortical bone. Acta Mech 213:131–154

    Article  MATH  Google Scholar 

  • Hellmich C, Barthélémy JF, Dormieux L (2004) Mineral-collagen interactions in elasticity of bone ultrastructure - A continuum micromechanics approach. Eur J Mech A Solids 23(5):783–810

    Article  MATH  Google Scholar 

  • Hellmich C, Ulm FJ (2004) can the diverse elastic properties of trabecular and cortical bone be attributed to only a few tissue-independant phase properties and their interactions? Biomech Model Mechanobiol 2:219–238

    Article  Google Scholar 

  • Lefèvre E, Farlay D, Bala Y, Subtil F, Wolfram U, Rizzo S, Baron C, Zysset P, Pithioux M, Follet H (2019) Compositional and mechanical properties of growing cortical bone tissue: a study of the human fibula. Sci Rep 9:17629

    Article  Google Scholar 

  • Maggiano IS, Maggiano CM, Clement JG, Thomas CDL, Carter Y, Cooper DM (2016) Three-dimensional reconstruction of Haversian systems in human cortical bone using synchrotron radiation-based micro-CT: morphology and quantification of branching and transverse connections across age. J Anat 228:719–732

    Article  Google Scholar 

  • Martelli S, Kersh ME, Schache AG, Pandy MG (2014) Strain energy in the femoral neck during exercise. J Biomech 47(8):1784–1791

    Article  Google Scholar 

  • Martínez-Reina J, Pivonka P (2019) Effects of long-term treatment of denosumab on bone mineral density: insights from an in-silico model of bone mineralization. Bone 125:87–95

    Article  Google Scholar 

  • Minonzio JG, Bochud N, Vallet Q, Ramiandrisoa D, Etcheto A, Briot K, Kolta S, Roux C, Laugier P (2019) Ultrasound-based estimates of cortical bone thickness and porosity are associated with nontraumatic fractures in postmenopausal women: a pilot study. J Bone Min Res 34:1585–1596

    Article  Google Scholar 

  • Moulinec H, Silva F (2014) Comparison of three accelerated FFT-based schemes for computing the mechanical response of composite materials. Int J Num Meth Eng 97:960–985

    Article  MathSciNet  MATH  Google Scholar 

  • Moulinec H, Suquet P (1998) A numerical method for computing the overall response of nonlinear composites with complex microstructure. Comput Methods Appl Mech Eng 157:69–94

    Article  MathSciNet  MATH  Google Scholar 

  • Parnell WJ, Grimal Q (2009) The influence of mesoscale porosity on cortical bone anisotropy. Investigations via asymptotic homogenization. J R Soc Interface 6:97–109

    Article  Google Scholar 

  • Parnell WJ, Vu MB, Grimal Q, Naili S (2012) Analytical methods to determine the effective mesoscopic and macroscopic elastic properties of cortical bone. Biomech Model Mechanobiol 11(6):883–901

    Article  Google Scholar 

  • Raum K (2008) Microelastic Imaging of Bone. IEEE Trans Ultrasonics Ferroelectrics Frequency Control 55(7):1417–1431

    Article  Google Scholar 

  • Raum K, Cleveland RO, Peyrin F, Laugier P (2006) Derivation of elastic stiffness from site-matched mineral density and acoustic impedance maps. Phys Med Biol 51(3):747–758

    Article  Google Scholar 

  • Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18(20):1325–30

    Article  Google Scholar 

  • Roschger P, Paschalis EP, Fratzl P, Klaushofer K (2008) Bone mineralization density distribution in health and disease. Bone 42(3):456–466

    Article  Google Scholar 

  • Sanz-Herrera JA, Mora-Macías J, Reina-Romo E, Domínguez J, Doblaré M (2019) Multiscale characterisation of cortical bone tissue. Appl Sci 9:5228

    Article  Google Scholar 

  • Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat methods 9(7):676–682

  • Sevostianov I, Kachanov M (2000) Impact of the porous microstructure on the overall elastic properties of the osteonal cortical bone. J Biomech 33(7):881–888

    Article  Google Scholar 

  • Suquet P (1987) Homogenization techniques for composite media (Lecture notes in Physics). In: Elements of homogenization for inelastic solid mechanics (vol 272, pp 194–278). Springer

  • van Rietbergen B, Ito K (2015) A survey of micro-finite element analysis for clinical assessment of bone strength: the first decade. J Biomech 48(5):832–841

    Article  Google Scholar 

  • Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32(10):1005–1012

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank ESRF for the access of beamline at ID 19 and 17 and the help from Cécile Olivier and Françoise Peyrin (CREATIS, CNRS 5220, INSERM U1206, Lyon) for performing SR-\(\mu\)CT experiments. This work has received financial support from Engineering Department of Sorbonne Université (UFR 919).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quentin Grimal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brémaud, L., Cai, X., Brenner, R. et al. Maximum effect of the heterogeneity of tissue mineralization on the effective cortical bone elastic properties. Biomech Model Mechanobiol 20, 1509–1518 (2021). https://doi.org/10.1007/s10237-021-01459-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10237-021-01459-z

Keywords

Navigation