Skip to main content
Log in

Gravitational field modelling near irregularly shaped bodies using spherical harmonics: a case study for the asteroid (101955) Bennu

  • Original Article
  • Published:
Journal of Geodesy Aims and scope Submit manuscript

Abstract

We apply three spherical-harmonic-based techniques to deliver external gravitational field models of the asteroid (101955) Bennu within its circumscribing sphere. This region is known to be peculiar for external spherical harmonic expansions, because it may lead to a divergent series. The studied approaches are (i) spectral gravity forward modelling via external spherical harmonics, (ii) the least-squares estimation from surface gravitational data using external spherical harmonics and (iii) the combination of internal and external series expansions. While the first method diverges beyond any reasonable doubts, we show that the other two methods may ensure relative accuracy from \({\sim }10^{-6}\) to \(10^{-8}\) in the vicinity of Bennu. This is possible even with the second method, despite the fact that it relies on a single series of external spherical harmonics. Our main motivation was to study conceptual differences between spherical harmonic coefficients from satellite data (analogy to the first method) and from surface gravitational data (the second method). Such coefficients are available through the popular spherical-harmonic-based models of the Earth’s gravitational field and often are combined together. We show that the coefficients from terrestrial data may lead to a divergence effect of partial sums, though excellent accuracy can be achieved when such model is used in full. Under (presently) extreme but realistic conditions, the divergence effect of partial sums may affect many near-surface geoscientific applications, such as the geoid/quasigeoid computation or residual terrain modelling. Computer codes (Fortran, MATLAB) and data produced within the study are made freely available at http://edisk.cvt.stuba.sk/~xbuchab/.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data Availability:

The input polyhedral model of Bennu’s shape is available at https://sbn.psi.edu/pds/resource/bennushape.html. The data produced within this study are available at http://edisk.cvt.stuba.sk/~xbuchab/. These include: (i) the \({\bar{r}}_{nm}^{\mathrm {S}}\) coefficients from Eq. (1), (ii) spherical harmonic coefficients of \(V^{\mathrm {SGFM}}\) from Eq. (2) (including the effect of the \(V_{\mathrm {ball}}\) term), (iii) the \({\bar{V}}_{nm}^{\mathrm {LS}}(N_{\mathrm {LS}})\) coefficients from Eq. (13) for \(N_{\mathrm {LS}} = 0, 5, 10, \dots , 65\), (iv) the \({\bar{V}}_{nm}^{\mathrm {Ext}}\) and \({\bar{V}}_{nm}^{\mathrm {Int}}\) coefficients computed with \(p_{\mathrm {max}}^{\mathrm {Int}} = p_{\mathrm {max}}^{\mathrm {Ext}} = 1000\), (v) the three grids of the reference gravitational potential from Table 2 and (vi) the GFM_DE_rule package for spatial-domain gravity forward modelling (Fortran and MATLAB) after Fukushima (2017). Due to their size (\({\sim }17.5\) GB), the scalar products from Eq. (10) were not uploaded, but are available on request from BB. Other (already published) routines that were used in this study, particularly for ultra-high-degree spherical harmonic analysis and synthesis (Fortran, C and MATLAB), are also available at the latter link.

Notes

  1. For the Earth, the first radius is taken from Sjöberg (1977) and the other one is equal to the semi-minor axis of GRS80 (Moritz 2000).

  2. Gradshteyn and Ryzhik (2007) acknowledge on asymptotic series that (Page 21) despite the fact that these series diverge, the values of the functions that they represent can be calculated with a high degree of accuracy if we take the sum of a suitable number of terms of such series.

  3. In our case, Bennu’s surface S given by Eq. (1) is sufficiently regular. Therefore, one can refer to the Keldysh–Lavrentiev theorem (e.g. Moritz 1980), implying that the \(\varepsilon \)-accuracy can theoretically be achieved not only above Bennu, but also on its surface.

  4. The integral can be weakly singular.

  5. In our study, \(N_{\mathrm {LS}}\) plays the role of N from Sacerdote and Sansò (2010).

  6. For flattened gravitating bodies such as Bennu or the Earth, advantages of spheroidal/ellipsoidal harmonics over spherical harmonics are well documented in the literature (e.g. Garmier and Barriot 2001; Hu and Jekeli 2015; Reimond and Baur 2016; Sebera et al. 2016).

References

  • Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J, Du Croz J, Greenbaum A, Hammarling S, McKenney A, Sorensen D (1999) LAPACK Users’ Guide, 3rd edn. Society for Industrial and Applied Mathematics, Philadelphia, PA, p 520

    Book  Google Scholar 

  • Augustin M, Freeden W, Nutz H (2018) About the importance of the Runge–Walsh concept for gravitational field determination. In: Freeden W, Nashed MZ (eds) Handbook of mathematical geodesy: functional analytic and potential theoretic methods. Birkhäuser, Cham, pp 517–560

    Chapter  Google Scholar 

  • Balmino G (1994) Gravitational potential harmonics from the shape of an homogeneous body. Celest Mech Dyn Astron 60:331–364

    Article  Google Scholar 

  • Balmino G, Vales N, Bonvalot S, Briais A (2012) Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. J Geod 86:499–520. https://doi.org/10.1007/s00190-011-0533-4

    Article  Google Scholar 

  • Barnouin OS, Daly MG, Palmer EE, Gaskell RW, Weirich JR, Johnson CL, Al Asad MM, Roberts JH, Perry ME, Susorney HCM, Daly RT, Bierhaus EB, Seabrook JA, Espiritu RC, Nair AH, Nguyen L, Neumann GA, Ernst CM, Boynton WV, Nolan MC, Adam CD, Moreau MC, Rizk B, Drouet DAubigny CY, Jawin ER, Walsh KJ, Michel P, Schwartz SR, Ballouz RL, Mazarico EM, Scheeres DJ, McMahon JW, Bottke WF, Sugita S, Hirata N, Watanabe SI, Burke KN, DellaGiustina DN, Bennett CA, Lauretta DS, The OSIRIS-REx Team (2019) Shape of (101955) Bennu indicative of a rubble pile with internal stiffness. Nat Geosci 12:247–252. https://doi.org/10.1038/s41561-019-0330-x

  • Barthelmes F (2013) Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth models (ICGEM), http://icgem.gfz-potsdam.de. Scientific Technical Report STR09/02, GFZ German Research Centre for Geosciences, Potsdam, Germany, 32 pp

  • Bucha B, Hirt C, Kuhn M (2019a) Cap integration in spectral gravity forward modelling: near- and far-zone gravity effects via Molodensky’s truncation coefficients. J Geod 93:65–83. https://doi.org/10.1007/s00190-018-1139-x

    Article  Google Scholar 

  • Bucha B, Hirt C, Kuhn M (2019b) Cap integration in spectral gravity forward modelling up to the full gravity tensor. J Geod 93:1707–1737. https://doi.org/10.1007/s00190-019-01277-3

    Article  Google Scholar 

  • Bucha B, Hirt C, Kuhn M (2019c) Divergence-free spherical harmonic gravity field modelling based on the Runge–Krarup theorem: a case study for the Moon. J Geod 93:489–513. https://doi.org/10.1007/s00190-018-1177-4

    Article  Google Scholar 

  • Bucha B, Hirt C, Yang M, Kuhn M, Rexer M (2019d) Residual terrain modelling (RTM) in terms of the cap-modified spectral technique: RTM from a new perspective. J Geod. https://doi.org/10.1007/s00190-019-01303-4

    Article  Google Scholar 

  • Chesley SR, Farnocchia D, Nolan MC, Vokrouhlický D, Chodas PW, Milani A, Spoto F, Rozitis B, Benner LAM, Bottke WF, Busch MW, Emery JP, Howell ES, Lauretta DS, Margot JL, Taylor PA (2014) Orbit and bulk density of the OSIRIS-REx target asteroid (101955) Bennu. Icarus 235:5–22. https://doi.org/10.1016/j.icarus.2014.02.020

    Article  Google Scholar 

  • Colombo OL (1981) Numerical methods for harmonic analysis on the sphere. Report No. 310, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio, 140 pp

  • Featherstone WE, Hirt C, Kuhn M (2013) Band-limited Bouguer gravity identifies new basins on the Moon. J Geophys Res Planets 118:1397–1413. https://doi.org/10.1002/jgre.20101

    Article  Google Scholar 

  • Fecher T, Pail R, Gruber T (2015) Global gravity field modeling based on GOCE and complementary gravity data. Int J Appl Earth Obs Geoinform 35:120–127. https://doi.org/10.1016/j.jag.2013.10.005

    Article  Google Scholar 

  • Fecher T, Pail R, Gruber T, Schuh WD, Kusche J, Brockmann JM, Loth I, Müller S, Eicker A, Schall J, Mayer-Gürr T, Kvas A, Klinger B, Rieser D, Zehentner N, Baur O, Höck E, Krauss S, Jäggi A, Meyer U, Prange L, Maier A (2017) GOCO05c: a new combined gravity field model based on full normal equations and regionally varying weighting. Surv Geophys 38:571–590. https://doi.org/10.1007/s10712-016-9406-y

    Article  Google Scholar 

  • Forsberg R, Tscherning CC (1981) The use of height data in gravity field approximation by collocation. J Geophys Res 86:7843–7854

    Article  Google Scholar 

  • Förste C, Bruinsma SL, Abrikosov O, Lemoine JM, Schaller T, Götze HJ, Ebbing J, Marty JC, Flechtner F, Balmino G, Biancale R (2014) EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. In: 5th GOCE User Workshop, Paris, France, 25–28 November

  • Freeden W (1980) On the approximation of external gravitational potential with closed systems of (trial) functions. Bull Géodésique 54:1–20

    Article  Google Scholar 

  • Freeden W, Schreiner M (2009) Spherical functions of mathematical geosciences: a scalar, vectorial, and tensorial setup. Springer, Berlin, p 602

    Book  Google Scholar 

  • Fukushima T (2012) Numerical computation of spherical harmonics of arbitrary degree and order by extending exponent of floating point numbers. J Geod 86:271–285. https://doi.org/10.1007/s00190-011-0519-2

    Article  Google Scholar 

  • Fukushima T (2017) Precise and fast computation of the gravitational field of a general finite body and its application to the gravitational study of asteroid Eros. Astron J 154(145):15. https://doi.org/10.3847/1538-3881/aa88b8

    Article  Google Scholar 

  • Garmier R, Barriot JP (2001) Ellipsoidal harmonic expansions of the gravitational potential: theory and applications. Celest Mech Dyn Astron 79:235–275

    Article  Google Scholar 

  • Górski KM, Bills BG, Konopliv AS (2018) A high resolution Mars surface gravity grid. Planet Space Sci 160:84–106. https://doi.org/10.1016/j.pss.2018.03.015

    Article  Google Scholar 

  • Gradshteyn IS, Ryzhik IM (2007) Table of Integrals, Series, and Products, seventh edn. Academic Press, 1172 pp

  • Grafarend EW, Engels J (1993) The gravitational field of topographic-isostatic masses and the hypothesis of mass condensation. Surv Geophys 140:495–524

    Article  Google Scholar 

  • Grombein T, Seitz K, Heck B (2017) On high-frequency topography-implied gravity signals for a height system unification using GOCE-based global geopotential models. Surv Geophys 38:443–477. https://doi.org/10.1007/s10712-016-9400-4

    Article  Google Scholar 

  • Gruber C, Novák P, Sebera J (2011) FFT-based high-performance spherical harmonic transformation. Stud Geophys Geod 55:489–500. https://doi.org/10.1007/s11200-011-0029-y

    Article  Google Scholar 

  • Heiskanen WA, Moritz H (1967) Physical geodesy. W. H, Freeman and Company, San Francisco, p 364

    Google Scholar 

  • Hirt C (2012) Efficient and accurate high-degree spherical harmonic synthesis of gravity field functionals at the Earth’s surface using the gradient approach. J Geod 86:729–744. https://doi.org/10.1007/s00190-012-0550-y

    Article  Google Scholar 

  • Hirt C, Kuhn M (2014) Band-limited topographic mass distribution generates full-spectrum gravity field: gravity forward modeling in the spectral and spatial domains revisited. J Geophys Res Solid Earth 119:3646–3661. https://doi.org/10.1002/2013JB010900

    Article  Google Scholar 

  • Hirt C, Kuhn M (2017) Convergence and divergence in spherical harmonic series of the gravitational field generated by high-resolution planetary topography-A case study for the Moon. J Geophys Res Planets 122:1727–1746. https://doi.org/10.1002/2017JE005298

    Article  Google Scholar 

  • Hirt C, Reußner E, Rexer M, Kuhn M (2016) Topographic gravity modeling for global Bouguer maps to degree 2160: validation of spectral and spatial domain forward modeling techniques at the 10 microgal level. J Geophys Res Solid Earth 121:6846–6862. https://doi.org/10.1002/2016JB013249

    Article  Google Scholar 

  • Hirt C, Yang M, Kuhn M, Bucha B, Kurzmann A, Pail R (2019) SRTM2gravity: an ultrahigh resolution global model of gravimetric terrain corrections. Geophys Res Lett 46:4618–4627. https://doi.org/10.1029/2019GL082521

    Article  Google Scholar 

  • Hobson EW (1931) The theory of spherical and ellipsoidal harmonics. Cambridge University Press, Cambridge, p 500

    Google Scholar 

  • Hotine M (1969) Mathematical geodesy. U.S., Department of Commerce, Washington, D.C., p 416

    Google Scholar 

  • Hu X, Jekeli C (2015) A numerical comparison of spherical, spheroidal and ellipsoidal harmonic gravitational field models for small non-spherical bodies: examples for the Martian moons. J Geodesy 89:159–177. https://doi.org/10.1007/s00190-014-0769-x

    Article  Google Scholar 

  • Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9:90–95. https://doi.org/10.1109/MCSE.2007.55

    Article  Google Scholar 

  • Jekeli C (1983) A numerical study of the divergence of spherical harmonic series of the gravity and height anomalies at the Earth’s surface. Bull Géodésique 57:10–28

    Article  Google Scholar 

  • Jekeli C (2017) Spectral methods in geodesy and geophysics. CRC Press, 415 pp

  • Jekeli C, Lee JK, Kwon JH (2007) On the computation and approximation of ultra-high-degree spherical harmonic series. J Geod 81:603–615. https://doi.org/10.1007/s00190-006-0123-z

    Article  Google Scholar 

  • Konopliv AS, Park RS, Yuan DN, Asmar SW, Watkins MM, Williams JG, Fahnestock E, Kruizinga G, Paik M, Strekalov D, Harvey N, Smith DE, Zuber MT (2014) High-resolution lunar gravity fields from the GRAIL primary and extended missions. Geophys Res Lett 41(5):1452–1458. https://doi.org/10.1002/2013GL059066

    Article  Google Scholar 

  • Krarup T (1969) A contribution to the mathematical foundation of physical geodesy. Meddelelse No. 44, Geodætisk Institut, København

  • Martinec Z (1998) Boundary-value problems for gravimetric determination of a precise geoid. Springer, Heidelberg, p 223

    Google Scholar 

  • Martinec Z, Pěč K (1989) The Phobos gravitational field modeled on the basis of its topography. Earth Moon Planets 45:219–235

    Article  Google Scholar 

  • Moritz H (1980) Advanced physical geodesy. Herbert Wichmann Verlag, Germany, p 500

    Google Scholar 

  • Moritz H (2000) Geodetic reference system 1980. J Geod 74:128–133. https://doi.org/10.1007/s001900050278

    Article  Google Scholar 

  • Moritz H (2003) The strange behavior of asymptotic series in mathematics, celestial mechanics and physical geodesy. In: Grafarend EW, Krumm FW, Schwarze VS (eds) Geodesy: the challenge of the third millennium. Springer, Berlin, pp 371–377

    Chapter  Google Scholar 

  • Nolan MC, Magri C, Howell ES, Benner LAM, Giorgini JD, Hergenrother CW, Hudson RS, Lauretta DS, Margot JL, Ostro SJ, Scheeres DJ (2013) Asteroid (101955) Bennu shape model V1.0. EAR-A-I0037-5-BENNUSHAPE-V1.0. NASA Planetary Data System, https://sbn.psi.edu/pds/resource/bennushape.html

  • Pail R, Fecher T, Barnes D, Factor JF, Holmes SA, Gruber T, Zingerle P (2018) Short note: the experimental geopotential model XGM2016. J Geod 92:443–451. https://doi.org/10.1007/s00190-017-1070-6

    Article  Google Scholar 

  • Park RS, Konopliv AS, Yuan DN, Asmar S, Watkins MM, Williams J, Smith DE, Zuber MT (2015) A high-resolution spherical harmonic degree 1500 lunar gravity field from the GRAIL mission. In: American Geophysical Union Fall Meeting, San Francisco, 14–18 December, pp G41B–01

  • Pavlis NK (1988) Modeling and estimation of a low degree geopotential model from terrestrial gravity data. Report No. 386, Department of Geodetic Science, The Ohio State University, Ohio, USA, 173 pp

  • Pavlis NK, Holmes SA, Kenyon SC, Factor JK (2012) The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J Geophys Res 117(B04406):1–38. https://doi.org/10.1029/2011JB008916

    Article  Google Scholar 

  • Reimond S, Baur O (2016) Spheroidal and ellipsoidal harmonic expansions of the gravitational potential of small Solar System bodies. Case study: Comet 67P/Churyumov-Gerasimenko. J Geophys Res Planets 121:497–515. https://doi.org/10.1002/2015JE004965

    Article  Google Scholar 

  • Rexer M (2017) Spectral solutions to the topographic potential in the context of high-resolution global gravity field modelling. PhD thesis, Technische Universität München, München, Germany, 212 pp

  • Rummel R, Rapp RH, Sünkel H, Tscherning CC (1988) Comparisons of global topographic/isostatic models to the Earth’s observed gravity field. Report No. 388, Department of Geodetic Science and Surveying, The Ohio State University, Columbus, Ohio, 33 pp

  • Sacerdote F, Sansò F (2010) Least squares, Galerkin and BVPs applied to the determination of global gravity field models. In: Mertikas SP (ed) Gravity, Geoid and Earth Observation: Proceedings of the IAG Commission 2: Gravity Field, Chania, Crete, Greece, 23–27 June 2008, Springer, vol 135, pp 511–517, ISBN 978-3-642-10633-0, e-ISSN 978-3-642-10634-7

  • Sansò F (1982) A note on density problems and the Runge–Krarup’s theorem. Bollettino di Geodesia e Scienze Affini 41(4):441–446

    Google Scholar 

  • Sansò F (1993) Theory of geodetic B.V.P.s applied to the analysis of altimetric data. In: Rummel R, Sansò F (eds) Satellite Altimetry in Geodesy and Oceanography, Springer-Verlag, Berlin, Heidelberg, pp 318–371, https://doi.org/10.1007/BFb0117924

  • Sansò F, Sideris MG (2013) Geoid determination: theory and methods. Springer, Heidelberg, p 734

    Book  Google Scholar 

  • Sansò F, Sideris MG (2017) Geodetic boundary value problem: the Equivalence between Molodensky’s and Helmert’s Solutions. Springer, 81 pp

  • Sansò F, Reguzzoni M, Barzaghi R (2019) Geodetic Heights. Springer, 141 pp

  • Sebera J, Bezděk A, Pešek I, Henych T (2016) Spheroidal models of the exterior gravitational field of asteroids Bennu and Castalia. Icarus 272:70–79. https://doi.org/10.1016/j.icarus.2016.02.038

    Article  Google Scholar 

  • Sjöberg L (1977) On the errors of spherical harmonic developments of gravity at the surface of the Earth. Report No. 12, Department of Geodetic Science, The Ohio State University, Columbus, Ohio, 74 pp

  • Sjöberg L, Bagherbandi M (2017) Gravity inversion and integration: theory and application in geodesy and geophysics. Springer, 383 pp

  • Sjöberg LE (2005) A discussion on the approximations made in the practical implementation of the remove-compute-restore technique in regional geoid modelling. J Geod 78:645–653. https://doi.org/10.1007/s00190-004-0430-1

    Article  Google Scholar 

  • Sjöberg LE (2015) The topographic bias in Stokes formula versus the error of analytical continuation by an Earth Gravitational Model—are they the same? J Geod Sci 5:171–179. https://doi.org/10.1515/jogs-2015-0017

    Article  Google Scholar 

  • Sjöberg LE, Bagherbandi M (2011) A numerical study of the analytical downward continuation error in geoid computation by EGM08. J Geod Sci 1:2–8. https://doi.org/10.2478/v10156-010-0001-8

    Article  Google Scholar 

  • Sneeuw N (1994) Global spherical harmonic analysis by least-squares and numerical quadrature methods in historical perspective. Geophys J Int 118:707–716

    Article  Google Scholar 

  • Šprlák M, Han SC, Featherstone WE (2018) Forward modelling of global gravity fields with 3D density structures and an application to the high-resolution (\({\sim }2\) km) gravity fields of the Moon. J Geod 92:847–862. https://doi.org/10.1007/s00190-017-1098-7

    Article  Google Scholar 

  • Sun W, Sjöberg LE (2001) Convergence and optimal truncation of binomial expansions used in isostatic compensations and terrain corrections. J Geod 74:627–636

    Article  Google Scholar 

  • Virtanen P, Gommers R, Oliphant TE, Haberland M, Reddy T, Cournapeau D, Burovski E, Peterson P, Weckesser W, Bright J, van der Walt SJ, Brett M, Wilson J, Jarrod Millman K, Mayorov N, Nelson ARJ, Jones E, Kern R, Larson E, Carey C, Polat I, Feng Y, Moore EW, VanderPlas J, Laxalde D, Perktold J, Cimrman R, Henriksen I, Quintero EA, Harris CR, Archibald AM, Ribeiro AH, Pedregosa F, van Mulbregt P, SciPy 10 Contributors, (2020) SciPy 1.0: fundamental algorithms for scientific computing in python. Nat Methods 17:261–272. https://doi.org/10.1038/s41592-019-0686-2

  • Wang YM (1997) On the error of analytical downward continuation of the earth’s external gravitational potential on and inside the earth’s surface. J Geod 71:70–82

    Article  Google Scholar 

  • Wang YM, Saleh J, Roman DR (2012) The US Gravimetric Geoid of 2009 (USGG2009): model development and evaluation. J Geod 86:165–180. https://doi.org/10.1007/s00190-011-0506-7

    Article  Google Scholar 

  • Wessel P, Smith WHF (1998) New, improved version of generic mapping tools released. EOS Trans Am Geophys Union 79:579. https://doi.org/10.1029/98EO00426

    Article  Google Scholar 

  • Wieczorek MA (2015) Gravity and topography of the terrestrial planets. In: Schubert G (ed) Treatise on Geophysics, 2nd edn, Elsevier, chap 10.5, pp 153–193, https://doi.org/10.1016/B978-0-444-53802-4.00169-X

  • Wieczorek MA, Phillips RJ (1998) Potential anomalies on a sphere: applications to the thickness of the lunar crust. J Geophys Res 103:1715–1724

    Article  Google Scholar 

Download references

Acknowledgements

BB was supported by the project VEGA 1/0809/21. We thank three reviewers for their valuable comments on the manuscript. The computations were performed at the HPC centres at the Slovak University of Technology in Bratislava, the Slovak Academy of Sciences and the University of Žilina, which are parts of the Slovak Infrastructure of High Performance Computing (SIVVP project, ITMS code 26230120002, funded by the European region development funds, ERDF). The maps were produced using the Generic Mapping Tools (Wessel and Smith 1998) and the plots were prepared with the Python’s Matplotlib module (Hunter 2007).

Author information

Authors and Affiliations

Authors

Contributions

BB designed the study, conducted all numerical experiments and drafted the manuscript. FS improved the design of the numerical experiments and refined the theoretical background of the study. BB and FS discussed and commented on the manuscript.

Corresponding author

Correspondence to Blažej Bucha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bucha, B., Sansò, F. Gravitational field modelling near irregularly shaped bodies using spherical harmonics: a case study for the asteroid (101955) Bennu. J Geod 95, 56 (2021). https://doi.org/10.1007/s00190-021-01493-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00190-021-01493-w

Keywords

Navigation