Skip to main content
Log in

Effect of quantum correction of electron–ion collision frequency on ion temperature and expansion energy in laser-driven fusion

  • Original Scientific Research
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The nonlinear heat conduction equation can be solved by quantum modified heat transfer coefficient in deuterium–tritium (DT) plasma driven by laser above the critical electron temperature. As a result, the electron profile temperature and the heat flux solutions are improved. In this paper, we have studied the subsequent modification of ion temperature due to ion heating by energy transfer between electrons and ions through electron–ion collisions. The differential equation between Te and Ti, expansion energy of plasma as well as the threshold energy of the laser beam for plasma ignition are renewed by considering quantum modification in electron–ion collision frequency. The achieved results improve the values of the ion temperature and the threshold energy for plasma ignition compared with the values obtained from the calculations using the classical electron–ion collision frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J L Bobin J. Phys. Fluids 14 2341 (1971)

    Article  ADS  Google Scholar 

  2. M D Perry and G Mourou Science 264 917 (1994)

    Article  ADS  Google Scholar 

  3. C Y Chien et al Opt. Lett. 18 1535 (1993)

    Article  ADS  Google Scholar 

  4. S Eliezer, The Interaction of High-Power Lasers with Plasmas (Bristol: IOP Publishing) pp 175 (2002)

  5. I V Afanas’ev, V M Krol, O N Krokhin, and I V Nemchinov, J. Appl. Math. Mech. 30 1218 (1966)

  6. A Caruso, P Bertolti and P Giupponi Nuovo Cimento B 45 176 (1966)

    Article  ADS  Google Scholar 

  7. C Fauquignon and F Floux J. Phys. Fluids 13 386 (1970)

    Article  ADS  Google Scholar 

  8. Y B Zeldovich, and Y B Raizer, Physics of Shock Waves and High Temperature Hydrodynamic Phenomena (New York and London:Academic Press) Vol. II, p 664 (1967)

  9. F J Mayer, J F McGrath and J W Steele J. Phys. A: Math. Gen. 16 3393 (1983)

    Article  ADS  Google Scholar 

  10. S P Hatchett et al Phys. Plasmas 7 2076 (2000)

    Article  ADS  Google Scholar 

  11. S Kumar and D N Gupta Laser and Particle Beams 38 73 (2020)

    Article  ADS  Google Scholar 

  12. S S Bulanov et al Phys. Rev. E 78 026412 (2008)

    Article  ADS  Google Scholar 

  13. T Esirkepov, M Borghesi, S V Bulanov, G Mourou and T Tajima Phys. Rev. Lett. 92 175003 (2004)

    Article  ADS  Google Scholar 

  14. H Hora J. Phys. Fluids 12 182 (1969)

  15. S Kumar et al Plasma Phys. Control. Fusion 61 085001 (2019)

    Article  ADS  Google Scholar 

  16. P Sharma, K Avinash and D N Gupta Laser and Particle Beams 36 376 (2018)

    Article  ADS  Google Scholar 

  17. M S Chu J. Phys. Fluids 15 413 (1972)

  18. H A Bethe in Handbuch der Physik (Heidelberg: Springer) Vol. 24 part1, p 497 (1934)

  19. G Grieger, and Wendelstein VII-Team in Plasma Physics and Controlled Nuclear Fusion Research 1980 (Vienna: IAEA) Vol. I, p 173, pp. 185 (1981)

  20. K A Razumova Plasma Phys. Controlled Fusion 26 37 (1984)

    Article  ADS  Google Scholar 

  21. F Nafari and M Ghoranneviss Phys. Plasmas 23 082302 (2016)

    Article  ADS  Google Scholar 

  22. L Spitzer and R Harm Phys. Rev. 89 977 (1953)

    Article  ADS  Google Scholar 

  23. B Malekynia, M Ghoranneviss and H Hora J. Fusion Energy 28 135 (2009)

    Article  ADS  Google Scholar 

  24. R E Marshak Ann. N Y Acad. Sci. 41 49 (1941)

    Article  ADS  Google Scholar 

  25. H Hora Nuovo Cimento B 64 1 (1981)

    Article  ADS  Google Scholar 

  26. H Hora, Plasmas at High Temperature and Density (Berlin: Springer-Verlag, Heidelberg) p. 31 (1991)

  27. H Hora Opt. Commun. 38 193 (1981)

    Article  ADS  Google Scholar 

  28. H Hora, R Sadighi-Bonabi, E Yazdani, H Afarideh, F Nafari and M Ghoranneviss Phys. Rev. E 85 036404 (2012)

    Article  ADS  Google Scholar 

  29. L Spitzer Physics of Fully Ionized Gases, 2nd edn. (New York: Wiley Interscience)) (1962)

    MATH  Google Scholar 

  30. A Caruso and R Gratton J. Plasma Phys. 11 839 (1969)

    Article  ADS  Google Scholar 

  31. A A Dougal and L Goldstein The Physical Review, Second series Vol. 109 No. 3 (1958)

  32. J Peyraud J. Physique 29 872 (1968)

  33. L X Benedict et al Physical Review E 86 046406 (2012)

    Article  ADS  Google Scholar 

  34. S Atzeni and J Meyer-ter-Vehn The Physics of Inertial Fusion. (London: Clarendon Press, Oxford)) (2004)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Azizi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Expansion energy of plasma electrons with quantum modified EICF consideration

Appendix: Expansion energy of plasma electrons with quantum modified EICF consideration

1.1 The expansion energy of the electrons due to ordinary Zeldovich solution for T e

The basic formula associated with the expansion energy of plasma has been obtained in [7] as follows:

$$w_{{{\text{expansion}}}} = \frac{4}{3}T\frac{\partial u}{{\partial x}}.$$
(42)

Here, T and u are the electron temperature and local velocity of fluid in plasma, respectively. The velocity u can be related to temperature T via the following formula:

$$u = C\sqrt {\frac{{k_{b} T}}{{m_{e} }}}$$
(43)

where C is another constant which can be calculated by comparison. However, depending on the solution of nonlinear heat transfer equation, Te(x, t), we can obtain the relation of expansion energy with respect to the electron temperature. First, as a review, we have derived the expansion energy of the electrons which satisfy the nonlinear heat transfer equation due to the Chu's solution.

As we see in [17], Chu’s solution can be presented as follows:

$$T_{e} (x,t) = \left( {Q^{2} /{\text{at}}} \right)^{\frac{2}{9}} f(\xi ) = \left( {Q^{2} /{\text{at}}} \right)^{\frac{2}{9}} \left[ {\frac{5}{18}\left( {\xi_{o}^{2} - \xi^{2} } \right)} \right]^{\frac{2}{5}}$$
(44)

where is defined as. Considering Ref. [7], the expansion energy of the hot electrons can be obtained by

$$w_{{{\text{expansion}}}} = \frac{4}{3}T\frac{\partial u}{{\partial x}} = C\frac{4}{3}T\frac{\partial }{\partial x}\left( {\sqrt {\frac{{k_{b} T}}{{m_{e} }}} } \right) = C\frac{1}{2}\frac{4}{3}T\sqrt {\frac{{k_{b} }}{{m_{e} T}}} \frac{\partial T}{{\partial x}} = C\frac{2}{3}\sqrt {\frac{{k_{b} T}}{{m_{e} }}} \frac{\partial T}{{\partial x}}.$$
(45)

Substituting Te from Chu's solution, we can establish a relation as derived in Ref. [17]. After some calculations for getting the derivative of temperature Te with respect to x, we have:

$$\begin{aligned} w_{{{\text{expansion}}}} & = \frac{4}{3}T\frac{\partial u}{{\partial x}} = C\frac{2}{3}\sqrt {\frac{{k_{b} T}}{{m_{e} }}} \frac{\partial T}{{\partial x}} = C\frac{2}{3}\sqrt {\frac{{k_{b} T}}{{m_{e} }}} \frac{\partial \xi }{{\partial x}}\frac{\partial T}{{\partial \xi }} \\ w_{{{\text{expansion}}}} & = C\frac{2}{3}\sqrt {\frac{{k_{b} T}}{{m_{e} }}} \frac{\partial \xi }{{\partial x}}\frac{\partial T}{{\partial \xi }} = C\frac{2}{3}\sqrt {\frac{{k_{b} T}}{{m_{e} }}} \left( {Q^{2} /{\text{at}}} \right)^{\frac{2}{9}} \times \frac{x}{{\left( {Q^{5/2} {\text{at}}} \right)^{\frac{4}{9}} }}\left( \frac{2}{5} \right)\left( { - \frac{10}{{18}}} \right)\left[ {\frac{5}{18}\left( {\xi_{o}^{2} - \xi^{2} } \right)} \right]^{{ - \frac{3}{5}}} \\ \end{aligned}.$$
(46)

Here, we use the chain rule as ξ is a function of x:

$$w_{{{\text{expansion}}}} = \frac{4x}{{27}}C\sqrt {\frac{{k_{b} T_{e} }}{{m_{e} }}} \frac{{\left( {Q^{2} /{\text{at}}} \right)^{\frac{2}{9}} }}{{\left( {Q^{5/2} {\text{at}}} \right)^{\frac{4}{9}} }}\left[ {\left( {\frac{{T_{e} }}{{\left( {Q^{2} /{\text{at}}} \right)^{\frac{2}{9}} }}} \right)^{\frac{5}{2}} } \right]^{{ - \frac{3}{5}}} = \frac{4}{27}\frac{1}{a}\left( \frac{x}{t} \right)C\sqrt {\frac{{k_{b} T_{e} }}{{m_{e} }}} T_{e}^{{ - \frac{3}{2}}} = \frac{4}{27}C^{2} \frac{1}{a}\frac{{k_{b} }}{{m_{e} }}T_{e}^{{ - \frac{1}{2}}}$$
(47)
$$w_{{{\text{expansion}}}} = \frac{8}{9}\frac{1}{a}\frac{{k_{b} }}{{m_{e} }}\frac{1}{{T_{e}^{\frac{1}{2}} }} = \frac{4}{27}C^{2} \frac{1}{a}\frac{{k_{b} }}{{m_{e} }}T_{e}^{{ - \frac{1}{2}}}.$$
(48)

Comparing the derived equation with the expansion energy term presented in Ref. [17] and equating it to Eq. (48), we obtain:

$$C^{2} = 6$$
(49)

1.2 The expansion energy of the electrons via Mayer solutions modified by quantum consideration to heat transfer equation coefficient T e

In Ref. [21], the solution of the nonlinear heat equation with quantum consideration in the ion–electron collision frequency has been derived as:

$$T_{e} (x,t) = \frac{{T_{{{\text{oe}}}} }}{{\left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{2/7} }} \times \left[ {1 - \frac{{x^{2} }}{{\frac{4}{3}L_{o}^{2} \left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{4/7} }}} \right],^{2/3}$$
(50)

where Toe is the initial temperature of electron and is determined by the total absorbed energy of laser at t = 0. Since we select neodymium glass laser as the driver laser, \(L_{o} \approx 1.06 \times 10^{ - 4} \;{\text{cm}}\). The quantity \(a_{{{\text{qu}}}}\) is defined in \(\chi = a_{{{\text{qu}}}} T_{e}^{3/2}\), where \(\chi\) is the quantum modified heat transfer coefficient. Again, by applying Eq. (45) and substituting Te from (48), we have:

$$\begin{aligned} & w_{{{\text{expansion}}}} = C\frac{2}{3}\sqrt {\frac{{k_{b} T_{e} }}{{m_{e} }}} \frac{{\partial T_{e} }}{\partial x} = \\ & \quad C\frac{2}{3}\sqrt {\frac{{k_{b} T_{e} }}{{m_{e} }}} \frac{\partial }{\partial x}\left[ \begin{gathered} \frac{{T_{{{\text{oe}}}} }}{{\left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{2/7} }} \times \hfill \\ \left[ {1 - \frac{{x^{2} }}{{\frac{4}{3}L_{o}^{2} \left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{4/7} }}} \right]^{2/3} \hfill \\ \end{gathered} \right] \\ \end{aligned}.$$
(51)

Taking the derivative into account with respect to x gives:

$$w_{{{\text{expansion}}}} = C\frac{2}{3}\sqrt {\frac{{k_{b} T_{e} }}{{m_{e} }}} \frac{{T_{{{\text{oe}}}} }}{{\left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{2/7} }} \times \left[ { - \frac{2x}{{\frac{4}{3}L_{o}^{2} \left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{4/7} }}} \right] \times \left[ {1 - \frac{{x^{2} }}{{\frac{4}{3}L_{o}^{2} \left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{4/7} }}} \right]^{ - 1/3}.$$
(52)

Consequently, we have:

$$w_{{{\text{expansion}}}} = C\frac{2}{3}\sqrt {\frac{{k_{b} T_{e} }}{{m_{e} }}} \left( { - 2x} \right)\frac{{T_{{{\text{oe}}}} }}{{\frac{4}{3}L_{o}^{2} \left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{6/7} }} \times \left[ {1 - \frac{{x^{2} }}{{\frac{4}{3}L_{o}^{2} \left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{4/7} }}} \right]^{ - 1/3}.$$
(53)

Considering Eq. (50), we conclude that:

$$\left[ {1 - \frac{{x^{2} }}{{\frac{4}{3}L_{o}^{2} \left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{4/7} }}} \right] = \left[ {\frac{{T_{e} }}{{T_{{{\text{oe}}}} }}\left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{2/7} } \right].$$
(54)

Therefore, we have:

$$w_{{{\text{expansion}}}} = C\frac{2}{3}\sqrt {\frac{{k_{b} T_{e} }}{{m_{e} }}} \left( { - 2x} \right)\frac{{T_{{{\text{oe}}}} }}{{\frac{4}{3}L_{o}^{2} \left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{6/7} }} \times \left[ {\frac{{T_{e} }}{{T_{{{\text{oe}}}} }}\left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{2/7} } \right]^{ - 1/2}.$$
(55)

As it can be seen from the numerical computations, we are able to use the following equation in Eq. (54) with sufficient accuracy:

$$\left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{2/7} \cong \left( {\left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right)^{2/7}.$$
(56)

Finally, we have:

$$w_{{{\text{expansion}}}} = C\frac{2}{3}\sqrt {\frac{{k_{b} T_{e} }}{{m_{e} }}} \left( { - 2x} \right)\frac{{T_{oe} }}{{\frac{4}{3}L_{o}^{2} \left[ {1 + \left( \frac{7}{2} \right)\frac{{a_{{{\text{qu}}}} T_{{{\text{oe}}}}^{3/2} }}{{L_{o}^{2} }}t} \right]^{6/7 + 1/7} }} \times \left[ {\frac{{T_{e} }}{{T_{{{\text{oe}}}} }}} \right]^{ - 1/2}$$
(57)
$$w_{{{\text{expansion}}}} = C\frac{2}{3}\sqrt {\frac{{k_{b} T_{e} }}{{m_{e} }}} \left( { - 2x} \right)\frac{{T_{oe}^{3/2} T_{e}^{ - 1/2} }}{{\frac{4}{3}L_{o}^{2} \left[ {\left( \frac{7}{2} \right)\frac{{a_{qu} T_{oe}^{3/2} }}{{L_{o}^{2} }}t} \right]}}.$$
(58)

By substituting \(C^{2} = 6\) in Eq. (58) and assuming, we obtain:

$$w_{{{\text{expansion}}}} = - C\frac{2}{7}\frac{1}{{a_{{{\text{qu}}}} }}\sqrt {\frac{{k_{b} }}{{m_{e} }}} \left( \frac{x}{t} \right) = - C\frac{2}{7}\frac{1}{{a_{{{\text{qu}}}} }}\sqrt {\frac{{k_{b} }}{{m_{e} }}} \left( {C\sqrt {\frac{{k_{b} T_{e} }}{{m_{e} }}} } \right) = - \frac{{2C^{2} }}{7}\frac{1}{{a_{{{\text{qa}}}} }}\left( {\frac{{k_{b} }}{{m_{e} }}} \right)T_{e}^{\frac{1}{2}}$$
(59)
$$w_{{{\text{expansion}}}} = - \frac{12}{7}\frac{1}{{a_{{{\text{qa}}}} }}\left( {\frac{{k_{b} }}{{m_{e} }}} \right)T_{e}^{\frac{1}{2}}.$$
(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markani, V., Amniat-Talab, M., Azizi, N. et al. Effect of quantum correction of electron–ion collision frequency on ion temperature and expansion energy in laser-driven fusion. Indian J Phys 96, 925–935 (2022). https://doi.org/10.1007/s12648-021-02030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02030-3

Keywords

Navigation