Skip to main content
Log in

Petrography and Geochemistry of Upper Carboniferous-Early Permian Sandstones from Zhanjin Formation in Qiwu Area, South Qiangtang Basin, Tibet: Implications for Provenance, Source Weathering and Tectonic Setting

  • Published:
Geochemistry International Aims and scope Submit manuscript

Abstract

The petrography, major, and trace elements concentration of the sandstones from the Zhanjin Formation in Qiwu area, south Qiangtang Basin, have been studied to determine their provenance, intensity of paleo-weathering and depositional tectonic setting. Petrography indicates that the composition and texture maturity of the sandstones are moderate. The detrital composition of Zhanjin Formation samples are dominated by quartz (70.1–80.3, average 74.1%) and feldspar (18.3–26.5, average 21.9%), but is low in lithic fragment (1.4–8.6, average 3.9%). The sandstone can be classified as arkose and litharenite arkose. The detrital model composition reflects that these sandstones are probably derived from a passive continental margin. The index of chemical variability (ICV), and Th/Sc vs. Zr/Sc discrimination diagram suggests that the compositional maturity and recycling were moderate to low. The index of alteration (CIA) and the A–CN–K diagram indicated that the intensity of weathering in the source area was low. The Al2O3/TiO2 vs. SiO2, Th/Sc, Co/Th, La/Sc, Cr/Th ratio values of the Zhanjin sandstones indicated that the sandstones were mainly derived from felsic source rocks. The Gondwana passive continental margin belt is probably the primary provenance area as evidenced by petrography and geochemistry features of the Zhanjin Formation. All kinds of tectonic discrimination diagrams based on major elements showed a rift setting for Zhanjin sandstones, which is consistent with the general views of study areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. N. Absar and B. Sreeniva, “Petrology and geochemistry of greywackes of the ~1.6 Ga Middle Aravalli Supergroup, northwest India: evidence for active margin processes,” Int. Geol. Rev. 57, 134–158 (2015).

    Article  Google Scholar 

  2. S. Ali, K. Stattegger, D. Garbe–Schongerg, M. Frank, S. Kraft, and W. Kuhnt, “The provenance of cretaceous to quaternary sediments in the Tarfaya basin, SW Morocco: evidence from trace element geochemistry and radiogenic Nd-Sr isotopes,” J. Afr. Earth Sci. 90, 64–76 (2014).

    Article  Google Scholar 

  3. J. S. Armstrong-Altrin, “Evaluation of two multi-dimensional discrimination diagrams from beach and deep sea sediments from the Gulf of Mexico and their application to Precambrian clastic sedimentary rocks,” Int. Geol. Rev. 57, 1446–1461 (2015).

    Article  Google Scholar 

  4. J. S. Armstrong-Altrin and S. P. Verma, “Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic setting,” Sediment. Geol. 177, 115–129 (2005).

    Article  Google Scholar 

  5. J. S. Armstrong-Altrin, Y. I. Lee, S. P. Verma, and S. Ramasamy, “Geochemistry of sandstones from the upper Miocene Kudankulam formation, Southern Indian: implications for provenance, weathering, and tectonic setting,” J. Sediment. Res. 74 (2), 285–297 (2004).

    Article  Google Scholar 

  6. J. S. Armstrong-Altrin, Y. I. Lee, J. J. Kasper-Zubillaga, A. Carranza-Edwards, D. Garcia, N. Eby, V. Balaram, and N. L. Cruz-Ortiz, “Geochemistry of beach sands along the Western Gulf of Mexico, Mexico: implication for provenance,” Chem. Erde 72, 345–362 (2012).

    Article  Google Scholar 

  7. J. S. Armsrtong-Altrin, R. Nagarajan, J. Madhavaraju, L. Rosalez-Hoz, Y. I. Lee, V. Balaram, A. Cruz-Martinez, and G. Avila-Ramirez, “Geochemistry of the Jurassic and upper Cretaceous shales from the Molango Region, Hidalgo, Eastern Mexico: implications of source-area weathering, provenance, and tectonic setting,” Comptes Rend. Geosci. 345, 185–202 (2013).

    Article  Google Scholar 

  8. J. S. Armstrong-Altrin, R. Nagarajan, Y. I. Lee, and J. J. Kasper-Zubillaga, “Geochemistry of sands along the San Nicolas and San Carlos beaches, Gulf of California, Mexico: implication for provenance,” Turk. J. Earth Sci. 23, 533–558 (2014).

    Article  Google Scholar 

  9. J. S. Armstrong-Altrin, M. L. Machain-Castillo, Rosales-Hozl, A. Carranza-Edwards, J. A. Sanchez-Cabeza, and A. C. Ruiz-Fernandez, “Provenance and depositional history of continental slope sediments in the Southwestern Gulf of Mexico unraveled by geochemical analysis,” Cont. Shelf Res. 95, 15–26 (2015).

    Article  Google Scholar 

  10. J. S. Armstrong-Altrin, R. Nagarajan, V. Balaram, and O. Natalhy-Pinedao, “Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting,” J. S. Am. Earth Sci. 64, 199–216 (2015).

    Article  Google Scholar 

  11. M. R. Bhatia, “Plate tectonics and geochemical composition of sandstones” J. Geol. 91, 611–627 (1983).

    Article  Google Scholar 

  12. M. R. Bhatia, “Rare earth element geochemistry of Australian Paleozoic graywackes and mud rocks: provenance and tectonic control,” Sediment. Geol. 45, 97–113 (1985).

    Article  Google Scholar 

  13. M. R. Bhatia and K. Crook, “Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins,” Contrib. Mineral. Petrol. 92 (2), 181–193 (1986).

    Article  Google Scholar 

  14. J. F. Cao, C. Y. Song, and X. G Fu. “Basic characteristics of Permian Zhanjin source rock in Well Qiangtang-5 in Qiangtang Basin,” Mar. Origin Petrol. Geol. (in Chinese) 20 (2), 15–20 (2015).

    Google Scholar 

  15. Y. J. Chen, X. Z. Pei, R. B. Li, and Z. V. Li, “Geochemical characteristics and tectonic significance of metasedimentary rocks from Naij Tal Group, Eastern Section of East Kunlun,” Geoscience 28 (3), 489–500 (2014).

    Google Scholar 

  16. K. C. Condie and D. J. Wronkiewicz, “The Cr/Th ratio in Precambrian pelites from the Kaapvaal craton as an index of craton evolution,” Earth Planet. Sci. Lett. 97, 256–267 (1990).

    Article  Google Scholar 

  17. R. Cox, D. R. Lowe, and R. L. Cullers, “The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States,” Geochim. Cosmochim. Acta 59, 2919–2940 (1995).

    Article  Google Scholar 

  18. R. L. Cullers and V. N. Podkovyrov, “Geochemistry of the Mesoproterozoic Lakhanda shale in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling,” Precambrian Res. 104, 77–93 (2000).

    Article  Google Scholar 

  19. W. M. Deng, J. X. Yi, and Z. P. Gua, “Basic–ultrabasic and volcanic rocks in Chagbu–Shuanghu area of northern Xizang (Tibet), China,” Sci. China Ser. D. 26 (4), 296–301 (1996).

    Google Scholar 

  20. H.F. Deng, D.S. Ma, C.T. Yao, Q.Z. Lian, “Agrochemistry study on Neoproterozoic glaciogenic sediments in Aksu area, Xinjiang,” Geochemica 143 (3), 224–237 (2014).

    Google Scholar 

  21. N. Etemad-Saeed, M. Hossein-Barzi, M. H. Adabi, N. R. Miller, A. Sadeghi, A. Houshmandzadeh, and D. F. Stockli, “Evidence for ca. 560 Ma Ediacaran glaciation in the Kahar formation, central Alborz Mountains, northern Iran,” Gondwana Res. 31, 164–183 (2016).

    Article  Google Scholar 

  22. J. J. Fan, C. Li, and M. Wang, “The genesis and material source of Carboniferous–Late Permian ice miscellaneous conglomerate: a case study of Gangma Co area, Qiangtang, Tibetan Plateau,” Geol. Bull. China. 31 (9), 1451–1460 (2012).

    Google Scholar 

  23. J.J. Fan, C. Li, and M. Wang, “The analysis of depositional environment and U-Pb dating of detrital zircon for Zhanjin Formation at Gangma Co Area, Southern Qiangtang, Tibeteau Plateau,” Acta Geol. Sinica. 88 (10), 1820–1831 (2014).

    Google Scholar 

  24. S. Fatima and M. S. Khan, “Petrographic and geochemical characteristics of Mesoproterozoic Kumbalgarh clastic rocks, NW Indian shield: implications for provenance, tectonic setting, and crustal evolution,” Int. Geol. Rev. 54, 1113–1144 (2012).

    Article  Google Scholar 

  25. C. M. Fedo, H. W. Nesbitt, and G. M. Young, “Unravelling the effects of potassium metamorphism in sedimentary rocks and potassium metamorphism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance,” Geology 23, 921–924 (1995).

    Article  Google Scholar 

  26. P. A. Floyd, J. A. Winchester, and R. G. Park, “Geochemistry and tectonic setting of Lewisian clastic metasediments from the Early Proterozoic Loch Maree Group of Gairloch, NW Scotland,” Precambrian Res. 45 (1), 203–214 (1989).

    Article  Google Scholar 

  27. E. Garzanti, P. Vermeesch, M. Padoan, A. Resentini, G. Vezzoli, and S. Ando, “Provenance of passive–margin sand (Southern Africa),” J. Geol. 122, 17–42 (2014).

    Article  Google Scholar 

  28. Q. R. Geng, G. T. Pan, and L. Q. Wang, “Tethyan evolution and metallogenic geological background of the Banggong Co–Nujiang belt and the Qiangtang massif in Tibet,” Geol. Bull. China 30 (8), 1261–1274 (2011).

    Google Scholar 

  29. Q. R. Geng, Z. M. Peng, and Z. Zhang, “New advances in the study of Carboniferous–Permian palepntology in Guoganjianianshan–Rongma area of Qiangtang region, Tibetan Plateau,” Geol. Bull. China 31 (4), 510–520 (2012).

    Google Scholar 

  30. G. H. Girty, D. L. Ridge, and C. Knaack, “Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California,” J. Sediment. Res. 66 (1), 107–118 (1996).

    Google Scholar 

  31. X. X. Gu, J. M. Liu, M. H. Zheng, J. X. Tang, and L. Qi, “Provenance and tectonic setting of the Proterozoic turbidities in Hunan, South China: geochemical evidence,” J. Sediment. Res. 72 (3), 393–407 (2002).

    Article  Google Scholar 

  32. M. M. Herron, “Geochemical classification of terrigenous sands and shales from core or log data,” J. Sediment. Petrol. 58, 820–829 (1988).

    Google Scholar 

  33. A. Hofmann “The geochemistry of sedimentary rocks from the Fig Tree Group, Barberton greenstone belt: implications for tectonic, hydrothermal and surface processes during mid–Archaean times,” Precambrian Res. 143, 23–49 (2005).

    Article  Google Scholar 

  34. C.M. Hu, “New genera and species of spiriferacean Carbdniferous to Early Permian from Duoma district, Rutog, Xizang (Tibet), China,” Earth Sci. 1 (19), 106–117 (1983).

    Google Scholar 

  35. J. J. Hu, L. Qi, N. Q. Fu, and J. Y. Yu, “Geochemistry characteristics of the Low Permian sedimentary rocks from central uplift zone, Qiangtang Basin, Tibet: insights into source-area weathering, provenance, recycling, and tectonic setting,” Arabian J. Geosci. 8, 5373–5388 (2014).

    Article  Google Scholar 

  36. P. A. Kappa, A. Yin, C. E. Manning, et al., “Tectonic evolution of the early Mesozoic blueschist–bearing Qiangtang metamorphic belt, central Tibet Tectonics,” Tectonics 22 (4), 17–44 (2003).

    Google Scholar 

  37. M. J. Le–Bas, R. W. Le-Maitre, A. Streckeisen, and B. Zanettinal, “A chemical classification of volcanic rocks based on the total alkali–silica diagram,” J. Petrol. Geol. 27, 745–750 (1986).

    Article  Google Scholar 

  38. C. Li, “The Longmucuo–Shuanghu–Lancangjiang plate suture and the north boundary of distribution of Gondwana facies Permo–Carboniferous system in northern Xizang, China,” J. Jilin Univ. (Earth Sci. Ed.,) 17 (2), 155–166 (1987).

  39. C. Li “A review on 20 years’ study of the Longmu Co–Shuanghu–Lancang River suture zone in Qianghai–Tibet plateau,” Geol. Rev. 54 (1), 107–119 (2008).

    Google Scholar 

  40. D. Y. Liang, Z. T. Nie, and T. Y. Guo, “Permo–Carboniferous Gondwana–Tethys facies in southern Karakoran Ali, Xi Ang (Tibet),” Earth Sci. 1 (19), 9–27 (1983).

    Google Scholar 

  41. B.P. Liu, X.S. Cui, “Discovery of Eurydesma-Fauna from Rutog, northwest Xizang (Tibet), and its biogeographic significance,” Earth Sci. 1 (19), 79–92 (1983).

    Google Scholar 

  42. J. M. G. Lopez, B. Bauluz, C. Fernandez-Nieto, and A. Y. Oliete, “Factors controlling the trace–element distribution in fine-grained rocks: the Albian kaolinite-rich deposits of the Oliete Basin (NE Spain),” Chem. Geol. 214, 1–19 (2005).

    Article  Google Scholar 

  43. J. Madhavaraju and S. Ramasamy, “Petrography and geochemistry of Late Maastrichtian–Early Paleocene sediments of Tiruchirapalli Cretaceous, Tamil Nadu–Paleoweathering and provenance implications,” J. Geol. Soc. India 59, 133–142 (2002).

    Google Scholar 

  44. S. M. McLennan, S. Hemming, D. K. McDaniel, and G. N. Hanson, “Geochemical approaches to sedimentation, provenance, and tectonics,” Processes Controlling the Composition of Clastic Sediments, Ed. by M. J. Johnsson and A. Basu” Geol. Soc. Am. Spec. Pap. 21–40 (1993).

    Google Scholar 

  45. X. H. Meng, Sedimentary Basin and Construction Sequence (Beijing China, 1993).

    Google Scholar 

  46. F. Migani, F. Borghesi, and E. Dinelli, “Geochemical characterization of surface sediments from the northern Adriatic wetlands around the Po river delta. Part I: bulk composition and relation to local background,” J. Geochem. Explor. 156, 72–88 (2015).

    Article  Google Scholar 

  47. S. M. Moosavirad, M. R. Janardhana, M. S. Sethumadhav, and M. R. Moghadam, “Geochemistry of lower Jurassic shales of the Shemshak Formation, Kerman Province, Central Iran: provenance, source weathering, and tectonic setting,” Chem. Erde 71, 279–288 (2011).

    Article  Google Scholar 

  48. R. Nagarajan, S. John, J.S. Armstrong-Altrin, and L. Franz, “Provenance and tectonic setting of Miocene siliciclastic sediments, Sibuti Formation, northwestern Borneo,” Arab. J. Geosci. 8, 8549–8565 (2015).

    Article  Google Scholar 

  49. H. W. Nesbitt and G. M. Young, “Early Proterozoic climates and plate motions inferred from major element chemistry of lutites,” Nature 299, 715–717 (1982).

    Article  Google Scholar 

  50. H. W. Nesbitt and G. M. Young, “Formation and diagenesis of weathering profiles,” J. Geol. 97, 129–147 (1989).

    Article  Google Scholar 

  51. H. W. Nesbitt, G. M. Young, and S. M. McLennan, “Effects of chemical weathering and sorting on the petrogenesis of siliciclastic sediments, with implications for provenance studies,” J. Geol. 104 (5), 525–542 (1996).

    Article  Google Scholar 

  52. G. T. Pan, Tectonic Map and Instructions of Tibet Plateau and Adjacent Region (Beijing, 2010).

    Google Scholar 

  53. A. Pullen, P. Kapp, and G. E. Gehrel, “Triassic continental subduction in central Tibet and Mediterranean–style closure of the Paleo–Tethys Ocean,” Geology 36, 351–354 (2008).

    Article  Google Scholar 

  54. B. P. Roser and R. J. Korsch, “Determination of tectonic setting of sandstone–mudstone suites using SiO2 content and K2O/Na2O ratio,” J. Geol. 94, 635–650 (1986).

    Article  Google Scholar 

  55. B. P. Roser and R. J. Korsch, “Provenance signatures of sandstone–mudstone suites determined using discriminant function analysis of major-element data,” Geochem. J. 67, 119–139 (1988).

    Google Scholar 

  56. B. P. Roser, R. A. Cooper, S. A. Nathan, and A. J. Tulloch, “Reconnaissance sandstone geochemistry, provenance, and tectonic setting of the lower Paleozoic terrains of the West Coast and Nelson, New Zealand,” New Zeal. J. Geol. Geophys. 39, 1–16 (1996).

    Article  Google Scholar 

  57. H. A. Tawfik, I. M. Ghandour, W. Maejima, J. S. Armstrong-Altrin, and A. M. T. Abdel-Hameed, “Petrography and geochemistry of the siliciclastic Araba Formation (Cambrian), east Sinai, Egypt: implications for provenance, tectonic setting and source weathering,” Geol. Mag. 154 (1), 23 (2017).

    Article  Google Scholar 

  58. S. Taylor and S. M. Mclennan, The Continental Crust: Its Composition and Evolution (Blackwell, Oxford, 1985), pp. 1–312 (1985).

    Google Scholar 

  59. H. F. Tao, S. Sun, Z. Q. Wang, X. F. Yang, and L. Jiang, “Petrography and geochemistry of Lower Carboniferous greywacke and mudstones in Northeast Junggar, China: implications for provenance, source weathering, and tectonic setting,” J. Asian Earth Sci. 87, 11–25 (2014).

    Article  Google Scholar 

  60. F. H. Tobia and K. J. Aswad, “Petrography and geochemistry of Jurassic sandstones, Western Desert, Iraq: Implications on provenance and tectonic setting,” Arab. J. Geosci. 8, 2771–2784 (2015).

    Article  Google Scholar 

  61. R. Valloni and J. B. Maynard “Detrital modes of recent deep-sea sands and their relation to tectonic settings: a first approximation,” Sedimentology 28, 75–83 (1981).

    Article  Google Scholar 

  62. P. P. Vandekamp and B. E. Leake, “Petrography and geochemistry of feldspathic and mafic sediments of the northeastern Pacific margin,” Trans. R. Soc. Edinb: Earth Sci. 76, 411–449 (1985).

    Article  Google Scholar 

  63. S. P. Verma and J. S. Armstrong-Altrin, “New multidimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Precambrian basins,” Chem. Geol. 355, 117–180 (2013).

    Article  Google Scholar 

  64. H. A. Wanas and M. M. Abuel-Hassan, “Paleosols of the upper Cretaceous–lower Tertiary Maghra Elbahari Formation in the northeastern portion of the Eastern Desert, Egypt: their recognition and geological significance,” Sediment. Geol. 183, 243–259 (2006).

    Article  Google Scholar 

  65. C. S. Wang, H. S. Yi, and Y. Li, The Geological Evolution and Oil and Gas Bearing Perspective Evaluation of the Qiangtang Baisn, Tibet (Beijing, 2001).

  66. J. Wang, W. Tan, Y. L. Li., Y. T. Li, M. Chen, C. S. Wang, Z. J. Guo, X. L. Wang, B.W. Du, and Z. F. Zhu, The Potential of the Oil and Gas Resources in Major Sedimentary Basins on the Qinghai–Xizang Plateau (Beijng, 2004).

    Google Scholar 

  67. Q. Wang, S. C. Xu, and R. Z. Wei, “Characteristics and tectonic setting of volcanic rocks of the Permain Zhanjin Formation in the Tuoheping Co area, northern Qiangtang, Qinghai–Tibet Plateau,” Geol. Bull. China 25 (1–2), 146–155 (2006).

    Google Scholar 

  68. Z. W. Wang, J. Wang, and X. G. Fu, “Provenance and tectonic setting of the Quemoco sandstones in the North Qiangtang Basin, North Tibet: evidence from geochemistry and detrital zircon geochronology,” Geol. J. 53 (4), 1465–1481 (2018).

    Article  Google Scholar 

  69. D. J. Wronkiewicz and K. C. Condie, “Geochemistry and provenance of sediments from the Pongola Supergroup, South Africa: evidence for a 3.0 Ga–old continental craton,” Geochim. Cosmochim. Acta. 53, 1537–1549 (1989).

    Article  Google Scholar 

  70. G. Y. Wu, “Azores-type oceanic island basalts in the Paleo-Tethyan major oceanic basin in the Bitu area, eastern Tibet, China,” Geol. Bull. China. 25 (7), 772–781 (2006).

    Google Scholar 

  71. S. B. Yang, Z. M. Song, and D. Y. Liang, “Late Carboniferous–Early Permian flysch trace fossils from Ali, Xizang (Tibet),” Earth Sci. 1 (19), 93–103 (1983).

    Google Scholar 

  72. S. M. Zaid, “Geochemistry of sandstones from the Pliocene Gabir Formation, north Marsa Alam, Red Sea, Egypt: Implication for provenance, weathering and tectonic setting,” J. African Earth Sci. 102, 1–17 (2015).

    Article  Google Scholar 

  73. S. M. Zaid and F. A. Gahtani, “Provenance, diagenesis, tectonic setting and geochemistry of Hawkesbury sandstone (Middle Triassic), southern Sydney Basin, Australia,” Turk. J. Earth Sci. 24, 72–98 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study is financially supported by the Project support by the National Natural Science Foundation of China (no. 41 772 113). We thank the journal reviewers for their very constructive and helpful comments, which helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuozhen Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian Hou, Han, Z., Mou, C. et al. Petrography and Geochemistry of Upper Carboniferous-Early Permian Sandstones from Zhanjin Formation in Qiwu Area, South Qiangtang Basin, Tibet: Implications for Provenance, Source Weathering and Tectonic Setting. Geochem. Int. 59, 1274–1292 (2021). https://doi.org/10.1134/S0016702921080127

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0016702921080127

Keywords:

Navigation