Skip to main content
Log in

Selenium-containing Nanosystems based on Amphiphilic Molecular Brushes with a Variable Degree of Polymerization of the Side Chains in Aqueous and Organic Media

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A comparative study of nanosystems based on the biogenic element selenium in the zero-valent form (Se0) and amphiphilic molecular brushes (graft-CP) with a hydrophobic polyimide backbone and hydrophilic side chains of polymethacrylic acid is performed using atomic force microscope, UV-vis spectroscopy, and dynamic light scattering. It is shown that the morphological and spectral characteristics of Se0/graft-CP nanostructures can be controlled by varying the degree of polymerization m of the side chains of amphiphilic molecular brushes. The effect of the nature of the solvent (water, dimethylformamide, and chloroform) on the morphology of thin graft-SP films on mica is shown by the example of a free (not loaded with Se0 nanoparticles) amphiphilic molecular brush of graft-SP with a specified degree of polymerization of the side chains (m = 270).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. S. S. Sheiko, B. S. Sumerlin, and K. Matyjaszewski, Prog. Polym. Sci. 33, 759 (2008). https://doi.org/10.1016/j.progpolymsci.2008.05.001

    Article  CAS  Google Scholar 

  2. D. M. Ilgach, T. K. Meleshko, and A. V. Yakimansky, Polym. Sci., Ser. C 57, 3 (2015). https://doi.org/10.1134/S181123821501004X

    Article  CAS  Google Scholar 

  3. T.-H. Tran, C. T. Nguyen, L. Gonzalez-Fajardo, D. Hargrove, D. Song, P. Deshmukh, L. Mahajan, D. Ndaya, L. Lai, R. M. Kasi, and X. Lu, Biomacromolecules 15, 4363 (2014). https://doi.org/10.1021/bm5013822

    Article  CAS  Google Scholar 

  4. G. Xie, M. R. Martinez, M. Olszewski, S. S. Sheiko, and K. Matyjaszewski, Biomacromolecules 20, 27 (2019). https://doi.org/10.1021/acs.biomac.8b01171

    Article  CAS  Google Scholar 

  5. T. Pelras, C. S. Mahon, and M. Müllner, Angew. Chem., Int. Ed. 57, 6982 (2018). https://doi.org/10.1002/anie.201711878

    Article  CAS  Google Scholar 

  6. I. V. Ivanov, T. K. Meleshko, A. V. Kashina, and A. V. Yakimansky, Russ. Chem. Rev. 88, 1248 (2019). https://doi.org/10.1070/rcr4870

    Article  CAS  Google Scholar 

  7. A. V. Yakimansky, T. K. Meleshko, D. M. Ilgach, M. A. Bauman, T. D. Anan’eva, L. G. Klapshina, S. A. Lermontova, I. V. Balalaeva, and W. E. Douglas, J. Polym. Sci., Part A: Polym. Chem. 51, 4267 (2013). https://doi.org/10.1002/pola.26846

    Article  CAS  Google Scholar 

  8. S. V. Valueva, E. R. Gasilova, T. K. Meleshko, M. E. Vylegzhanina, L. N. Borovikova, and A. V. Yakimansky, in Proceedings of the V Interdisciplinary Scientific Forum with International Participation “New Materials and Promising Technologies” (Moscow, 2019), Vol. 1, p. 468.

  9. S. V. Valueva, L. N. Borovikova, T. E. Sukhanova, and M. E. Vylegzhanina, in Proccedings of the VII International Conference “Actual Achievements of European Science 2011” (Sofia, 2011), p. 13.

  10. S. V. Valueva, L. N. Borovikova, V. V. Koreneva, et al., Russ. J. Phys. Chem. A 81, 1170 (2007).

    Article  CAS  Google Scholar 

  11. S. V. Valueva, S. G. Azizbekyan, M. P. Kuchinskii, et al., Nanotekhnika, No. 4, 53 (2012).

    Google Scholar 

  12. S. V. Valueva, M. E. Vylegzhanina, and A. V. Plyushchenko, J. Surf. Investigation.: X-ray, Synchrotron Neutron Tech. 13, 586 (2019). https://doi.org/10.1134/S1027451019040177

    Article  CAS  Google Scholar 

  13. T. K. Meleshko, I. V. Ivanov, A. V. Kashina, N. N. Bogorad, M. A. Simonova, N. V. Zakharova, A. P. Filippov, and A. V. Yakimansky, Polym. Sci., Ser. B 60, 35 (2018). https://doi.org/10.1134/S1560090418010098

    Article  CAS  Google Scholar 

  14. T. K. Meleshko, D. M. Il’gach, N. N. Bogorad, N. V. Kukarkina, and A. V. Yakimansky, Polym. Sci., Ser B 56, 118 (2014). https://doi.org/10.1134/S1560090414020110

    Article  CAS  Google Scholar 

  15. Colorimetric Determination of Nonmetals, Ed. by D. F. Boltz (Interscience, New York, 1958; Inostrannaya Literatura, Moscow, 1963).

  16. S. V. Valueva, M. E. Vylegzhanina, and T. E. Sukhanova, in Proceedings of the XXV International Conference “Fundamental and Applied Research: Current Issues, Achievements, and Innovations” (Nauka Prosveshchenie, Penza, 2019), Part 1, p. 13.

  17. P. V. Kamat, J. Phys. Chem. B 106, 7729 (2002).

    Article  CAS  Google Scholar 

  18. A. P. Filippov, E. V. Belyaeva, A. S. Krasova, et al., Polym. Sci., Ser. A 56, 393 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education and Science (Megagrant from the Government of the Russian Federation, agreement no. 14. W03.31.0022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Valueva.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valueva, S.V., Vylegzhanina, M.E., Mitusova, K.A. et al. Selenium-containing Nanosystems based on Amphiphilic Molecular Brushes with a Variable Degree of Polymerization of the Side Chains in Aqueous and Organic Media. J. Surf. Investig. 15, 313–320 (2021). https://doi.org/10.1134/S1027451021020336

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021020336

Keywords:

Navigation