Skip to main content
Log in

Dynamic brain effective connectivity analysis based on low-rank canonical polyadic decomposition: application to epilepsy

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

In this paper, a new method to track brain effective connectivity networks in the context of epilepsy is proposed. It relies on the combination of partial directed coherence with a constrained low-rank canonical polyadic tensor decomposition. With such combination being established, the most dominating directed graph structures underlying each time window of intracerebral electroencephalographic signals are optimally inferred. Obtained time and frequency signatures of inferred brain networks allow respectively to track the time evolution of these networks and to define frequency bands on which they are operating. Besides, the proposed method allows also to track brain connectivity networks through several epileptic seizures of the same patient. Understanding the most dominating directed graph structures over epileptic seizures and investigating their behavior over time and frequency plans are henceforth possible. Since only few but the the most important directed connections in the graph structure are of interest and also for a meaningful interpretation of obtained signatures to be guaranteed, the low-rank canonical polyadic tensor decomposition is prompted respectively by the sparsity and the non-negativity constraints on the tensor loading matrices. The main objective of this contribution is to propose a new way of tracking brain networks in the context of epileptic iEEG data by identifying the most dominant effective connectivity patterns underlying the observed iEEG signals at each time window. The performance of the proposed method is firstly evaluated on simulated data imitating brain activities and secondly on real intracerebral electroencephalographic signals obtained from an epileptic patient. The partial directed coherence-based tensor has been decomposed into space, time, and frequency signatures in accordance with the expected ground truth for each consecutive sequence of the simulated data. The method is also in accordance with the clinical expertise for iEEG epileptic signals, where the signatures were investigated through a simultaneous multi-seizure analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akaike H (1969) Fitting autoregressive models for prediction. Ann Inst Stat Math 21(1):243–247

    Article  Google Scholar 

  2. Astolfi L, Cincotti F, Mattia D, Salinari S, Bablioni C, Basilisco A, Rossini M, Ding L, Ni Y, He B, Marciani M, Bablioni F (2004) Estimation of the effective and functional human cortical connectivity with structural equation modeling and directed transfer function applied to high-resolution EEG. Magn Reson Imaging 22(10):1457–1470

    Article  PubMed  Google Scholar 

  3. Basser P, Mattiello J, Le Bihan D (1994) MR Diffusion tensor spectroscopy and imaging. Biophys J 66(1):259–267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Baccalá L, Sameshima K (2001) Partial directed coherence: a new concept in neural structure determination. Biol Cybern 84(6):463–474

    Article  PubMed  Google Scholar 

  5. Blinowska K (2011) Review of the methods of determination of directed connectivity from multichannel data. Med Biol Eng Comput 49(5):521–529

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bancaud P, Angelergues R, Bonis A, Bordas-Ferrer M, Bresson M, Buser P, Covello L, Morel P, Szikla G, Takeda A, Talairach J (1970) Functional stereotaxic exploration (SEEG) of epilepsy. Electroencephalographic Clin Neurophysiol 8(1):85–86

    Google Scholar 

  7. Bancaud J, Talairach J, Bonis A, Schaub G, Bordas-Ferer M (1965) La stéréo-électro-encéphalographie dans l’épilepsie : informations neurophysiopathologiques apportées par l’investigation fonctionnelle stéréotaxique. Edited by Masson

  8. Boon P, Vonck K, De Reuck J, Caemaert J (2001) Vagus nerve stimulation for refractory epilepsy. Seizure 10(6):448–455

    Article  CAS  PubMed  Google Scholar 

  9. Boon P, Vandekerckhove T, Achten E, Thiery E, Goossens L, Vonck K, D’Have M, van Hoey G, Vanrumste B, Legros B, Defreyne L, De Reuck J (1999) Epilepsy surgery in Belgium, the experience in Gent. Acta Neurologica Belgica 99(4):256–265

    CAS  PubMed  Google Scholar 

  10. Bohyd S, Parikh N, Chu E, Peleato B, Eckstein J (2010) Distributed opitmization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn 3(1):1–122

    Article  Google Scholar 

  11. Bro R (1997) PARAFAC, tutorial and applications. Chemom Intell Lab Syst 38:149–171

    Article  CAS  Google Scholar 

  12. Bro R, Henk A, Kiers L (2003) A new efficient method for determining the number of components in PARAFAC models. Journal of Chemometrics 17(5):274–279

    Article  CAS  Google Scholar 

  13. Bro R, Kjeldahl K, Smilde A, Kiers H (2003) Cross-validation of component models: a critical look at current methods. Anal Bioanal Chem 390(5):1241–1251

    Article  CAS  Google Scholar 

  14. Carroll J, Chang J (1970) Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika 35:283–319

    Article  Google Scholar 

  15. Yang C, Le Bouquin Jeannès R, Faucon G, Shu H (2019) Detecting information flow direction in multivariate linear and nonlinear models. Signal Process 93(1):304–312

    Article  Google Scholar 

  16. Coloigner J, Karfoul A, Albera L, Common P (2014) Line search ans trust region strategies for canonical decomposition of semi- nonnegative semi-symetric 3rd order tensors. Linear Algebra Appl 450:334–374

    Article  Google Scholar 

  17. Cong F, Lin Q, Kuang L, Gong X, Astikainen P, Ristaniemi T (2015) Tensor decomposition of EEG signals: a brief review. Computat Neurosci 248:59–69

    Google Scholar 

  18. De Herdt V, Boon P, Ceulemans B, Hauman H, Lagae L, Legros B, Sadzot B, Van Bogaert P, van Rijckevorsel K, Verhelst H, Vonck K (2007) Vagus nerve stimulation for refractory epilepsy: a Belgian multicenter study. Eur J Paediatr Neurol 11(5):261–269

    Article  PubMed  Google Scholar 

  19. Ding J, Tarokh V, Yang Y (2018) Model selection techniques: an overview. IEEE Signal Processing Magazine 35(6):16–34

    Article  Google Scholar 

  20. Ding L (2009) Reconstructing cortical current density by exploring sparseness in the transform domain. Phys Med Biol 54(9):2683–2697

    Article  PubMed  Google Scholar 

  21. Fasoula A, Attal Y, Schwartz D (2013) Comparative performance evaluation of data-driven causality measures applies to brain networks. J Neurosci Methods 215(2):170–189

    Article  PubMed  Google Scholar 

  22. Fazel M (2002) Matrix rank minimization with applications. In PhD thesis, Stanford Univeristy

  23. Friston K, Kahan J, Razi A, Stephan K, Sporns O (2014) On nodes and modes in resting state fMRI. NeuroImage 99:535–547

    Article  Google Scholar 

  24. Friston K, Kahan J, Biswal B, Razi A (2014) A DCM for resting state fRMI. NeuroImage 94:396–407

    Article  PubMed  Google Scholar 

  25. Friston K (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36

    Article  PubMed  Google Scholar 

  26. Gourevitch B, Le Bouquin Jeannès R, Faucon G (2006) Linear and non-linear causality between signals: methods, examples and neurophysiological applications. Biol Cybern 95(4):349–369

    Article  PubMed  Google Scholar 

  27. Granger C (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 37(3):424–438

    Article  Google Scholar 

  28. Han X, Albera L, Kachenoura A, Senhadji L, Shu H (2017) Low rank canonical polyadic decomposition of tensors based on group sparsity. In: 25th European signal processing conference. Vol. 25, pp 668–672

  29. Harshman R (1972) PARAFAC2: mathematical and technical notes. In: UCLA Working papers in phonetics, Vol. 22, University of California, Los Angeles

  30. Hillard C, Lim L (2013) Most tensor problems are NP-hard. J ACM 60(6):39–45

    Google Scholar 

  31. Hitchcock F (1927) The expression of a tensor or a polyadic as sum of products. J Math Phys 6 (1-4):164–189

    Article  Google Scholar 

  32. Karahan E, Rojas-López P, Bringas-Vega M, Valdés-Hernández P, Valdes-Sosa P (2015) Tensor analysis and fusion of multimodal brain images. Proc IEEE 103(9):1531–1559

    Article  CAS  Google Scholar 

  33. Kolda T, Bader B (2009) Tensor decompositions and applications. SIAM Rev 51(3):455–500

    Article  Google Scholar 

  34. Kritchman S, Nadler B (2008) Determining the number of components in a factor model from limited noisy data. Chemometr Intell Lab Syst 94(1):19–32

    Article  CAS  Google Scholar 

  35. Kruskal J (1977) Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Appl 18(12):95–138

    Article  Google Scholar 

  36. De Lathauwer L (2008) Decompositions of a higher-order tensor in block terms - Part I: Lemmas for partitioned matrices. SIAM J Matrix Anal Appl 30(3):1022–1032

    Article  Google Scholar 

  37. De Lathauwer L (2008) Decompositions of a higher-order tensor in block terms - Part II: Definitions and uniqueness. SIAM J Matrix Anal Appl 30(3):1033–1066

    Article  Google Scholar 

  38. Liu K, da Costa J, Cheung So H, Huang L, Ye J (2016) Detection of number of components in CANDECOMP/PARAFAC models via minimum description length. Digit Signal Process 51:110–123

    Article  CAS  Google Scholar 

  39. Minka T (2000) Automatic choice of dimensionality for PCA. In: 13th International conference on neural information processing systems, vol 13, pp 577–583

  40. Miwakeichi F, Martinez-Montes E, Valdés-Sosa P, Nishiyama N, Mizuhara H, Yamaguchi Y (2004) Decomposing EEG data into space-time-frequency components using parallel factor analysis. NeuroImage 22(3):1035–1045

    Article  PubMed  Google Scholar 

  41. Mørup M, Hansen L, Herrmann C, Parnas J, Arnfred S (2006) Parallel factor analysis as an exploratory tool for wavelet transformed event-related eeg. NeuroImgae 29(3):938–947

    Article  Google Scholar 

  42. Niesing J (1997) Simultaneous component and factor analysis methods for two or more groups: a comparative study. volume 2nd ed Leiden: The Netherlands, DSWO Press, Leiden University

  43. Nunez P, Srinivasan R, Westdrop A, Wijesinghe R, Tucker D, Silberstein R, Cadusch P (1997) EEG Coherency: I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography Clin Neurophysiol 103(5):449–515

    Article  Google Scholar 

  44. Ozcaglar C, Shabbeer A, Vandenberg S, Yener B, Bennett K (2011) Sublineage structure analysis of Mycobacterium tuberculosis complex strains using multiple-biomarker tensors. BMC Genomics 12 (Suppl 2)S1:1–26

    Article  Google Scholar 

  45. Pester B, Ligges C, Leistritz L, Witte H, Schiecke K (2015) Advanced insights into functional brain connectivity by combining tensor decomposition and partial directed coherence. PlOs one 10(6)

  46. Petersen K, Pedersen M (2012) The matrix cookbook published by technical university of denmark. IMM Group:Intelligent Signal Processing

  47. Priestley M (1981) Spectral analysis and time series, vol 1–2. Academic Press, London

    Google Scholar 

  48. Valdes-Sosa P, Roebroeck A, Daunizeau J, Friston K (2011) Effective connectivity: influence, causality and biophysical modeling. NeuroImage 58(2):339–361

    Article  PubMed  Google Scholar 

  49. Saito Y, Harashima H (1981) Tracking of information within multichannel EEG record - causal analysis in EEG. In: Recent advances in EEG and EMG data processing. Elsevier, Amsterdam, pp 133–146

  50. Sameshima K, Baccalá L (1999) Using partial directed coherence to describe neuronal ensemble interactions. J Neurosci Methods 94(1):93–103

    Article  CAS  PubMed  Google Scholar 

  51. Schwartz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Google Scholar 

  52. Sidiropoulos N, Bro R, Giannakis G (2000) Parallel factor analysis in sensor array processing. IEEE Trans Signal Process 48(8):2377–2388

    Article  Google Scholar 

  53. Sørensen M, De Lathauwer L (2013) Blind signal separation via tensor decomposition with vandermonde factor: canonical polyadic decomposition. IEEE Trans Signal Process 61(22):5507–5519

    Article  Google Scholar 

  54. Sun F, Morell M (2014) The RNS System: responsive cortical stimulation for the treatment of refractory partial epilepsy. Expert Rev Med Devices 11(6):563–572

    Article  CAS  PubMed  Google Scholar 

  55. Taheri N, Han X, Karfoul A, Ansari K, Merlet I, Senhadji L, Albera L, Kachenoura A (2018) Brain source localization using constrained low rank canonical Polyadic decomposition. In: 52nd IEEE Asilomar conference on signals, systems and computers

  56. Tucker L (1966) Some mathematical notes on three-mode factor analysis. Psychometrika 31 (3):279–311

    Article  CAS  PubMed  Google Scholar 

  57. Vonck K, Boon P, Claeys P, Dedeurwaerdere S, Achten R, van Roost D (2005) Long-term deep brain stimulation for refractory temporal lobe epilepsy. Epilepsia 46(Suppl. 5):98–99

    Article  PubMed  Google Scholar 

  58. Weiss M, Römer F, Haardt M, Jannek D, Husar P (2009) Multi-dimensional space-time-frequency component analysis of event related EEG data using closed-form PARAFAC. In: IEEE International conference on acoustics speech, and signal processing, pp 349–352

  59. Wright S (1921) Correlation and causation. J Agr Res 20(7):557–585

    Google Scholar 

  60. Zhao Q, Zhou G, Zhang L, Cichocki A, Amari S (2015) Bayesian robust tensor factorization for incomplete multiway data. IEEE Trans Neural Netw Learng Syst 13(9):736–748

    Google Scholar 

Download references

Acknowledgements

Authors would like to thank the CHU (Centre Hospitalier Universitaire), Rennes, France, for the iEEG dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre-Antoine Chantal.

Ethics declarations

Ethics approval

All experimental procedures have been conducted at the CHU (Centre Hospitalier Universitaire), Rennes, France, following the ethical and regulatory standards. The patient has signed a consent and has been informed that his iEEG data would be used for clinical research and might serve for publication.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1.1 A.1 Technical materials on the minimization of \(\boldsymbol {{\mathscr{L}}}_{1}\) defined in Eq. 14

As mentioned in Section 3.2.1, solving the minimization problem defined in Eq. 13 is possible by minimizing its associated augmented Lagrangian function \({\mathscr{L}}_{1}\) given by:

$$ \begin{array}{@{}rcl@{}} \mathcal{L}_{1}&=&{{\alpha}_{\mathbf{S}} \left\| \mathbf{S} \right\|}_{2,1}+{\delta}{\left\| \mathbf{Y} \right\|}_{1}+{\alpha}_{\mathbf{T}}{\left\| \mathbf{T} \right\|}_{2,1}+{\alpha}_{\mathbf{F}}{\left\| \mathbf{F} \right\|}_{2,1}\\ &&+ vec(\mathbf{W})^{\top} vec(\mathbf{Y}-\mathbf{S})+\frac{\rho}{2} \left\| \mathbf{Y}-\mathbf{S} \right\|^{2}_{F}\\ &&+\lambda{\left\| \boldsymbol{\mathcal{P}}-\sum\limits_{r=1}^{R} \mathbf{s}_{r} \circ \mathbf{t}_{r} \circ \mathbf{f}_{r} \right\|}_{F}^{2} \end{array} $$
(23)
$$ \begin{array}{@{}rcl@{}} &=&{\alpha}_{\mathbf{S}} Tr\left( \mathbf{S}^{\top}\boldsymbol{\Gamma}_{S}\mathbf{S}\right)+{\delta}{\left\| \mathbf{Y} \right\|}_{1}+{\alpha}_{\mathbf{T}} Tr\left( \mathbf{T}^{\top}\boldsymbol{\Gamma}_{T}\mathbf{T}\right)+{\alpha}_{\mathbf{F}}Tr\left( \mathbf{F}^{\top}\boldsymbol{\Gamma}_{F}\mathbf{F}\right) \end{array} $$
$$ \begin{array}{@{}rcl@{}} &&+ vec(\mathbf{W})^{\top} vec(\mathbf{Y}-\mathbf{S})+\frac{\rho}{2} \left\| \mathbf{Y}-\mathbf{S} \right\|^{2}_{F}+\lambda{\left\| \boldsymbol{\mathcal{P}}-\sum\limits_{r=1}^{R} \mathbf{s}_{r} \circ \mathbf{t}_{r} \circ \mathbf{f}_{r} \right\|}_{F}^{2}\\ \end{array} $$
(24)

with respect to its variable matrices S, T, F. This minimization is possible by looking for the stationary points of \({\mathscr{L}}_{1}\) in these variable matrices, as shown hereafter. Note that according to Definition 3, we can write P(1) = S(FT), P(2) = T(SF), and P(3) = F(TS). For mathematical convenience, derivation of the update rules will be expressed in a vector form.

1.1.1 A.1.1 Update of S

The stationary point of \({\mathscr{L}}_{1}\) defined in Eq. 14 in S is computed by solving the equation \(\frac {\partial \boldsymbol {{\mathscr{L}}}_{1}}{\partial vec({\mathbf {S})}}=\mathbf {0}\). Then according to Eq. 24, we can write:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_{1}}{\partial vec({\mathbf{S})}}=& \alpha_{\mathbf{S}} \frac{\partial Tr\left( \mathbf{S}^{\top} \boldsymbol{\Gamma}_{\mathbf{S}} \mathbf{S}\right)} {\partial vec({\mathbf{S})}} +\frac{\partial vec(\mathbf{W})^{\top} vec(\mathbf{Y}-\mathbf{S})} {\partial vec({\mathbf{S})}}+\frac{\rho}{2} \frac{\partial \left\| \mathbf{Y}-\mathbf{S} \right\|^{2}_{F}} {\partial vec(\mathbf{S})}+\lambda \frac{\partial \left\| \mathbf{P}_{(1)}-\mathbf{S}(\mathbf{F}\odot\mathbf{T})^{\top} \right\|^{2}_{F}} {\partial vec({\mathbf{S})}} \end{array} $$
(25)

Now, based on the properties of matrix trace, Kronecker product [46], and [16], we obtain:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_1}{\partial vec(\mathbf{S})}&=& -2\lambda((\mathbf{F}\odot\mathbf{T})\otimes \mathbf{I}_{{N}_v^2-N_v})^{\top} vec(\mathbf{P}_{(1)})-vec(\mathbf{W})-\rho vec(\mathbf{Y})\\ && +(2\alpha_{\mathbf{S}} \mathbf{I}_R \otimes \boldsymbol{\Gamma}_{\mathbf{S}}+2\lambda((\mathbf{F}\odot\mathbf{T})^{\top} (\mathbf{F}\odot\mathbf{T}) )\otimes \mathbf{I}_{{N}_v^2-N_v}+\rho \mathbf{I}_{R({N}_v^2-N_v})) vec(\mathbf{S}) \end{array} $$
(26)

Then, by solving \(\frac {\partial \boldsymbol {{\mathscr{L}}}_{1}}{\partial vec({\mathbf {S})}}=\mathbf {0}\) with respect to vec(S), we get:

$$ \begin{array}{@{}rcl@{}} vec(\mathbf{S})&=&(\alpha_{\mathbf{S}} \mathbf{I}_R \otimes \boldsymbol{\Gamma}_{\mathbf{S}} + \lambda ((\mathbf{F}\odot\mathbf{T})^{\top} (\mathbf{F}\odot\mathbf{T}) )\otimes \mathbf{I}_{{N}_v^2-N_v}+\rho \mathbf{I}_{R({N}_v^2-N_v)})^{-1} \\ && \times((\lambda (\mathbf{F}\odot\mathbf{T})^{\top} \otimes \mathbf{I}_{{N}_v^2-N_v}) vec(\mathbf{P}_{(1)})+\frac{vec(\mathbf{W})}{2}+\frac{\rho}{2} vec(\mathbf{Y})) \end{array} $$
(27)

1.1.2 A.1.2 Update of T

Similarly, the stationary point of \({\mathscr{L}}_{1}\) defind in Eq. 14 in T is computed by solving the equation \(\frac {\partial \boldsymbol {{\mathscr{L}}}_{1}}{\partial vec({\mathbf {T})}}=\mathbf {0}\). Then according to Eq. 24, we can write:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_1}{\partial vec({\mathbf{T})}}= \alpha_{\mathbf{T}} \frac{\partial Tr(\mathbf{T} \boldsymbol{\Gamma}_{\mathbf{T}} \mathbf{T}^{\top})} {\partial vec({\mathbf{T})}} +\lambda \frac{\partial \left\| \mathbf{P}_{(2)}-\mathbf{T}(\mathbf{S}\odot\mathbf{F})^{\top} \right\|^2_F} {\partial vec({\mathbf{T})}} \end{array} $$
(28)

Based also on the properties of matrix trace, Kronecker product [46], and [16], we obtain:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_1}{\partial vec({\mathbf{T})}}&=& 2\lambda ((\mathbf{S} \odot \mathbf{F})\otimes \mathbf{I}_{N_w})^{\top} vec(\mathbf{P}_{(2)})\\ &&+\left( 2\alpha_{\mathbf{S}} \mathbf{I}_{R}\otimes \boldsymbol{\Gamma}_{T}+2\lambda((\mathbf{S} \odot \mathbf{F})(\mathbf{S} \odot \mathbf{F})^{\top}\right)\otimes \mathbf{I}_{N_w})vec(\mathbf{T}) \end{array} $$
(29)

Then, by solving \(\frac {\partial {\mathscr{L}}_{1}}{\partial vec(\mathbf {S})}=\mathbf {0}\), we get:

$$ \begin{array}{@{}rcl@{}} vec(\mathbf{T})=&(\alpha_{\mathbf{T}} \mathbf{I}_R \otimes \boldsymbol{\Gamma}_{\mathbf{T}} +\lambda ((\mathbf{S}\odot\mathbf{F})^{\top} (\mathbf{S}\odot\mathbf{F}) )\otimes \mathbf{I}_{{N_w}})^{-1}(\lambda(\mathbf{S}\odot\mathbf{F})^{\top}\otimes \mathbf{I}_{{N_w}})vec(\mathbf{P}_{(2)}) \end{array} $$
(30)

1.1.3 A.1.3 Update of F

Similarly, the stationary point of \({\mathscr{L}}_{1}\) defined in Eq. 14 in F is computed by solving the equation \(\frac {\partial \boldsymbol {{\mathscr{L}}}_{1}}{\partial vec({\mathbf {F})}}=\mathbf {0}\). Then according to Eq. 24, we can write:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_1}{\partial vec({\mathbf{F})}}= \alpha_{\mathbf{F}} \frac{\partial Tr(\mathbf{F} \boldsymbol{\Gamma}_{\mathbf{F}} \mathbf{F}^{\top})} {\partial vec({\mathbf{F})}} +\lambda \frac{\partial \left\| \mathbf{P}_{(3)}-\mathbf{F}(\mathbf{T}\odot\mathbf{S})^{\top} \right\|^2_F} {\partial vec({\mathbf{F})}} \end{array} $$
(31)

Based also on the properties of matrix trace, Kronecker product [46], and [16], we obtain:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_1}{\partial vec({\mathbf{F})}}&=& 2\lambda ((\mathbf{T} \odot \mathbf{S})\otimes \mathbf{I}_{N_f})^{\top} vec(\mathbf{P}_{(3)})\\ &&+(2\alpha_{\mathbf{F}} \mathbf{I}_{R}\otimes \boldsymbol{\Gamma}_{F}+2\lambda((\mathbf{T} \odot \mathbf{S})(\mathbf{T} \odot \mathbf{S})^{\top})\otimes \mathbf{I}_{N_f})vec(\mathbf{F}) \end{array} $$
(32)

Then, by solving \(\frac {\partial {\mathscr{L}}_{1}}{\partial vec(\mathbf {F})}=\mathbf {0}\), we get:

$$ \begin{array}{@{}rcl@{}} vec(\mathbf{F})&=&(\alpha_{\mathbf{F}} \mathbf{I}_R \otimes \boldsymbol{\Gamma}_{\mathbf{F}}+\lambda ((\mathbf{T}\odot\mathbf{S})^{\top}\\&& \times(\mathbf{T}\odot\mathbf{S}) )\otimes \mathbf{I}_{{N_f}})^{-1}(\lambda(\mathbf{T}\odot\mathbf{S})^{\top}\otimes \mathbf{I}_{{N_f}})vec(\mathbf{P}_{(3)}) \end{array} $$
(33)

1.1.4 A.1.4 Update of Y

The update rule of the dual variable Y is given by:

$$ \mathbf{Y} \leftarrow \mathbf{Y}+{prox}_{\phi,\frac{\delta}{\rho}}\left( \mathbf{S}+\frac{\mathbf{W}}{\rho}\right) $$
(34)

where \({prox}_{\phi ,\frac {\delta }{\rho }}\) is a proximal operator dealing with non smooth function (here, \(\phi =\left \| . \right \|_{1} \)) initially proposed in [20] and \(\frac {\delta }{\rho }\) denotes the shrinking threshold.

1.1.5 A.1.5 Update of W

The update rule of the Lagrange multiplier W is given by:

$$ \mathbf{W} \leftarrow \mathbf{W} +\rho (\mathbf{S}-\mathbf{Y}) $$
(35)

1.2 A.2 Technical materials on the minimization of \(\boldsymbol {{\mathscr{L}}}_{2}\) defined in Eq. 17

As mentioned in Section 3.2.2, solving the minimization problem defined in Eq. 16 is possible by minimizing its associated augmented Lagrangian function \({\mathscr{L}}_{2}\) given by:

$$ \begin{array}{@{}rcl@{}} \mathcal{L}_{2}&=&{{\alpha}_{\mathbf{S}} \left\| \mathbf{S} \right\|}_{2,1}+{\delta}{\left\| \mathbf{Y} \right\|}_{1}+{\alpha}_{\mathbf{T}}{\left\| \mathbf{T} \right\|}_{2,1}+{\alpha}_{\mathbf{F}}{\left\| \mathbf{F} \right\|}_{2,1}\\ &&+{\alpha}_{\mathbf{C}}{\left\| \mathbf{C} \right\|}_{2,1}+ vec(\mathbf{W})^{\top} vec(\mathbf{Y}-\mathbf{S})+\frac{\rho}{2} \left\| \mathbf{Y}-\mathbf{S} \right\|^{2}_{F}\\ &&+\lambda{\left\| \boldsymbol{\mathcal{Q}}-{\sum}_{r=1}^{R} \mathbf{s}_{r} \circ \mathbf{t}_{r} \circ \mathbf{f}_{r} \circ \mathbf{c}_{r} \right\|}_{F}^{2} \end{array} $$
(36)
$$ \begin{array}{@{}rcl@{}} &=&{\alpha}_{\mathbf{S}} Tr(\mathbf{S}^{\top}\boldsymbol{\Gamma}_{S}\mathbf{S})+{\delta}{\left\|\mathbf{Y} \right\|}_{1}+{\alpha}_{\mathbf{T}} Tr(\mathbf{T}^{\top}\boldsymbol{\Gamma}_{T}\mathbf{T})\\ &&+{\alpha}_{\mathbf{F}}Tr(\mathbf{F}^{\top}\boldsymbol{\Gamma}_{F}\mathbf{F})+{\alpha}_{\mathbf{C}}Tr(\mathbf{C}^{\top}\boldsymbol{\Gamma}_{C}\mathbf{C})\\ &&+ vec(\mathbf{W})^{\top} vec(\mathbf{Y}-\mathbf{S})+\frac{\rho}{2} \left\|\mathbf{Y}-\mathbf{S} \right\|^{2}_{F}\\&&+\lambda{\left\| \boldsymbol{\mathcal{Q}}-{\sum}_{r=1}^{R} \mathbf{s}_{r} \circ \mathbf{t}_{r} \circ \mathbf{f}_{r} \circ \mathbf{c}_{r} \right\|}_{F}^{2} \end{array} $$
(37)

with respect to its variable matrices S, T, F, and C. This minimization is possible by looking for the stationary points of \({\mathscr{L}}_{2}\) in these variable matrices, as shown hereafter. Note that according to Definition 3, the unfolding matrices associated with the first, the second, the third, and the fourth direction of the 4rd-order tensor \(\boldsymbol {\mathcal {Q}}\) are given, respectively, by: Q(1) = S(CFT), Q(2) = T(SCF), Q(3) = F(TSC), and Q(4) = C(FTS). For mathematical convenience, derivation of the update rules will be expressed in a vector form.

1.2.1 A.2.1 Update of S

The stationary point of \({\mathscr{L}}_{2}\) defined in Eq. 17 in S is computed by solving the equation \(\frac {\partial \boldsymbol {{\mathscr{L}}}_{2}}{\partial vec({\mathbf {S})}}=\mathbf {0}\). Then according to Eq. 36, we can write:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_{2}}{\partial vec({\mathbf{S})}}&=& \alpha_{\mathbf{S}} \frac{\partial Tr(\mathbf{S}^{\top} \boldsymbol{\Gamma}_{\mathbf{S}} \mathbf{S})} {\partial vec({\mathbf{S})}} +\frac{\partial vec(\mathbf{W})^{\top} vec(\mathbf{Y}-\mathbf{S})} {\partial vec({\mathbf{S})}}\\&&+\frac{\rho}{2} \frac{\partial \left\| \mathbf{Y}-\mathbf{S} \right\|^{2}_{F}} {\partial vec(\mathbf{S})} +\lambda \frac{\partial \left\| \mathbf{Q}_{(1)}-\mathbf{S}(\mathbf{C} \otimes \mathbf{F}\odot\mathbf{T})^{\top} \right\|^{2}_{F}} {\partial vec({\mathbf{S})}} \end{array} $$
(38)

Now based on the properties of matrix trace, Kronecker product [46], and [16], we obtain:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_2}{\partial vec(\mathbf{S})}&=& -2\lambda((\mathbf{F}\odot\mathbf{T})\otimes \mathbf{I}_{{N}_v^2-N_v})^{\top} vec(\mathbf{Q}_{(1)})-vec(\mathbf{W})-\rho vec(\mathbf{Y})\\ &&+(2\alpha_{\mathbf{S}} \mathbf{I}_R \otimes \boldsymbol{\Gamma}_{\mathbf{S}}+2\lambda((\mathbf{F}\odot\mathbf{T})^{\top} (\mathbf{F}\odot\mathbf{T}) )\otimes \mathbf{I}_{{N}_v^2-N_v}\\ &&+\rho\mathbf{I}_{R({N}_v^2-N_v)}) vec(\mathbf{S}) \end{array} $$
(39)

Then, by solving \(\frac {\partial \boldsymbol {{\mathscr{L}}}_{2}}{\partial vec({\mathbf {S})}}=\mathbf {0}\) with respect to vec(S), we get:

$$ \begin{array}{@{}rcl@{}} vec(\mathbf{S})&=&(\alpha_{\mathbf{S}} \mathbf{I}_R \otimes \boldsymbol{\Gamma}_{\mathbf{S}} + \lambda ((\mathbf{C} \otimes \mathbf{F}\odot\mathbf{T})^{\top} (\mathbf{C} \otimes \mathbf{F}\odot\mathbf{T}) )\otimes \mathbf{I}_{{N}_v^2-N_v}+\rho \mathbf{I}_{R({N}_v^2-N_v)})^{-1}\\ &&\times\left( \left( \lambda (\mathbf{C} \otimes \mathbf{F}\odot\mathbf{T})^{\top}\otimes \mathbf{I}_{{N}_v^2-N_v}\right)vec(\mathbf{Q}_{(1)})+\frac{vec(\mathbf{W})}{2}+\frac{\rho}{2} vec(\mathbf{Y})\right) \end{array} $$
(40)

1.2.2 A.2.2 Update of T

Similarly, the stationary point of \({\mathscr{L}}_{2}\) defined in Eq. 17 in T is computed by solving the equation \(\frac {\partial \boldsymbol {{\mathscr{L}}}_{2}}{\partial vec({\mathbf {T})}}=\mathbf {0}\). Then according to Eq. 36, we can write:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_2}{\partial vec({\mathbf{T})}}= \alpha_{\mathbf{T}} \frac{\partial Tr(\mathbf{T} \boldsymbol{\Gamma}_{\mathbf{T}} \mathbf{T}^{\top})} {\partial vec({\mathbf{T})}} +\lambda \frac{\partial \left\| \mathbf{Q}_{(2)}-\mathbf{T}(\mathbf{S}\odot\mathbf{F})^{\top} \right\|^2_F} {\partial vec({\mathbf{T})}} \end{array} $$
(41)

Based also on the properties of matrix trace, Kronecker product [46], and [16], we obtain:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_2}{\partial vec({\mathbf{T})}}& =& 2\lambda ((\mathbf{S} \odot \mathbf{F})\otimes \mathbf{I}_{N_w})^{\top} vec(\mathbf{Q}_{(2)})\\ &&+(2\alpha_{\mathbf{S}} \mathbf{I}_{R}\otimes \boldsymbol{\Gamma}_{T}+2\lambda((\mathbf{S} \odot \mathbf{C} \odot \mathbf{F})(\mathbf{S} \odot \mathbf{C} \odot \mathbf{F})^{\top})\otimes \mathbf{I}_{N_w})vec(\mathbf{T}) \end{array} $$
(42)

Then, by solving \(\frac {\partial {\mathscr{L}}_{2}}{\partial vec(\mathbf {S})}=\mathbf {0}\), we get:

$$ \begin{array}{@{}rcl@{}} vec(\mathbf{T})&=&(\alpha_{\mathbf{T}} \mathbf{I}_R \otimes \boldsymbol{\Gamma}_{\mathbf{T}} +\lambda ((\mathbf{S}\odot\mathbf{C} \odot\mathbf{F})^{\top}\\ &&\times (\mathbf{S}\odot\mathbf{C} \odot\mathbf{F}) )\otimes \mathbf{I}_{{N_w}})^{-1}(\lambda(\mathbf{S}\odot\mathbf{C} \odot\mathbf{F})^{\top}\otimes \mathbf{I}_{{N_w}})vec(\mathbf{Q}_{(2)}) \end{array} $$
(43)

1.2.3 A.2.3 Update of F

The stationary point of \({\mathscr{L}}_{2}\) defined in Eq. 17 in F is computed by solving the equation \(\frac {\partial \boldsymbol {{\mathscr{L}}}_{2}}{\partial vec({\mathbf {F})}}=\mathbf {0}\). Then, according to Eq. 24, we can write:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_1}{\partial vec({\mathbf{F})}}= \alpha_{\mathbf{F}} \frac{\partial Tr(\mathbf{F} \boldsymbol{\Gamma}_{\mathbf{F}} \mathbf{F}^{\top})} {\partial vec({\mathbf{F})}} +\lambda \frac{\partial \left\| \mathbf{Q}_{(3)}-\mathbf{F}(\mathbf{T}\odot\mathbf{S})^{\top} \right\|^2_F} {\partial vec({\mathbf{F})}} \end{array} $$
(44)

Based also on the properties of matrix trace, Kronecker product [46], and [16], we obtain:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_2}{\partial vec({\mathbf{F})}}&=& 2\lambda ((\mathbf{T} \odot \mathbf{S}\odot \mathbf{C})\otimes \mathbf{I}_{N_f})^{\top} vec(\mathbf{Q}_{(3)})\\ &+&(2\alpha_{\mathbf{F}} \mathbf{I}_{R}\otimes \boldsymbol{\Gamma}_{F}+2\lambda((\mathbf{T} \odot \mathbf{S}\odot \mathbf{C})(\mathbf{T} \odot \mathbf{S}\odot \mathbf{C})^{\top})\otimes \mathbf{I}_{N_f})vec(\mathbf{F}) \end{array} $$
(45)

Then, by solving \(\frac {\partial {\mathscr{L}}_{2}}{\partial vec(\mathbf {F})}=\mathbf {0}\), we get:

$$ \begin{array}{@{}rcl@{}} vec(\mathbf{F})&=&(\alpha_{\mathbf{F}} \mathbf{I}_{R} \otimes \boldsymbol{\Gamma}_{\mathbf{F}} +\lambda ((\mathbf{T}\odot\mathbf{S}\odot \mathbf{C})^{\top} (\mathbf{T}\odot\mathbf{S}\odot \mathbf{C}) )\otimes \mathbf{I}_{{N_{f}}})^{-1}\\ &&\times (\lambda(\mathbf{T}\odot\mathbf{S}\odot \mathbf{C})^{\top}\otimes \mathbf{I}_{{N_{f}}})vec(\mathbf{Q}_{(3)}) \end{array} $$
(46)

1.2.4 A.2.4 Update of C

Similarly, the stationary point of \({\mathscr{L}}_{2}\) defined in Eq. 17 in C is computed by solving the equation \(\frac {\partial \boldsymbol {{\mathscr{L}}}_{2}}{\partial vec({\mathbf {C})}}=\mathbf {0}\). Then according to Eq. 24, we can write:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_2}{\partial vec({\mathbf{C})}}= \alpha_{\mathbf{C}} \frac{\partial Tr(\mathbf{C} \boldsymbol{\Gamma}_{\mathbf{C}} \mathbf{C}^{\top})} {\partial vec({\mathbf{C})}} +\lambda \frac{\partial \left\| \mathbf{Q}_{(4)}-\mathbf{C}(\mathbf{F}\odot\mathbf{T}\odot\mathbf{S})^{\top} \right\|^2_F} {\partial vec({\mathbf{C})}} \end{array} $$
(47)

Based also on the properties of matrix trace, Kronecker product [46], and [16], we obtain:

$$ \begin{array}{@{}rcl@{}} \frac{\partial \boldsymbol{\mathcal{L}}_2}{\partial vec({\mathbf{C})}}&=& 2\lambda ((\mathbf{F}\odot\mathbf{T}\odot\mathbf{S})\otimes \mathbf{I}_{N_c})^{\top} vec(\mathbf{Q}_{(4)})\\ &&+(2\alpha_{\mathbf{C}} \mathbf{I}_{R}\otimes \boldsymbol{\Gamma}_{C}+2\lambda((\mathbf{F}\odot\mathbf{T}\odot\mathbf{S})(\mathbf{F}\odot\mathbf{T}\odot\mathbf{S})^{\top})\otimes \mathbf{I}_{N_c})vec(\mathbf{C}) \end{array} $$
(48)

Then, by solving \(\frac {\partial {\mathscr{L}}_{2}}{\partial vec(\mathbf {C})}=\mathbf {0}\), we get:

$$ \begin{array}{@{}rcl@{}} vec(\mathbf{C})&=&(\alpha_{\mathbf{C}} \mathbf{I}_R \otimes \boldsymbol{\Gamma}_{\mathbf{C}} +\lambda ((\mathbf{F}\odot\mathbf{T}\odot\mathbf{S})^{\top} (\mathbf{F}\odot\mathbf{T}\odot\mathbf{S}) )\otimes \mathbf{I}_{{N_c}})^{-1}\\ &&\times (\lambda(\mathbf{F}\odot\mathbf{T}\odot\mathbf{S})^{\top}\otimes \mathbf{I}_{{N_c}})vec(\mathbf{Q}_{(4)}) \end{array} $$
(49)

1.2.5 A.2.5 Update of Y

The update rule of the dual variable Y is given by:

$$ \mathbf{Y} \leftarrow \mathbf{Y}+{prox}_{\phi,\frac{\delta}{\rho}}\left( \mathbf{S}+\frac{\mathbf{W}}{\rho}\right) $$
(50)

1.2.6 A.2.6 Update of W

The update rule of the Lagrange multiplier W is given by:

$$ \mathbf{W} \leftarrow \mathbf{W} +\rho (\mathbf{S}-\mathbf{Y}) $$
(51)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chantal, PA., Karfoul, A., Nica, A. et al. Dynamic brain effective connectivity analysis based on low-rank canonical polyadic decomposition: application to epilepsy. Med Biol Eng Comput 59, 1081–1098 (2021). https://doi.org/10.1007/s11517-021-02325-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-021-02325-x

Keywords

Navigation