Skip to main content
Log in

Localized non blow-up criterion of the Beale-Kato-Majda type for the 3D Euler equations

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove a localized non blow-up theorem of the Beale–Kato–Majda type for the solution of the 3D incompressible Euler equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bardos, C., Titi, E.S.: Euler equations for an ideal incompressible fluid. Russ. Math. Surv. 62(3), 409–451 (2007)

    Article  MathSciNet  Google Scholar 

  2. Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 61–66 (1984)

    Article  MathSciNet  Google Scholar 

  3. Chae, D.: Incompressible Euler Equations: The Blow-Up Problem and Related Results, Handbook of Differential Equations: Evolutionary Equations, vol. IV, pp. 1–55. Elsevier/North-Holland, Amsterdam (2008)

    MATH  Google Scholar 

  4. Chae, D., Wolf, J.: On the local Type I conditions for the 3D Euler equations. Arch. Rat. Mech. Anal. (2), 641–663 (2018)

  5. Constantin, P.: On the Euler equations of incompressible fluids. Bull. Am. Math. Soc. 44(4), 603–621 (2007)

    Article  MathSciNet  Google Scholar 

  6. Constantin, P., Fefferman, C., Majda, A.: Geometric constraints on potential singularity formulation in the 3-D Euler equations. Commun. P.D.E. 21(3–4), 559–571 (1996)

    MATH  Google Scholar 

  7. Deng, J., Hou, T.Y., Yu, X.: Improved geometric conditions for non-blow up of the 3D incompressible Euler equations. Commun. P.D.E. 31(1–3), 293–306 (2006)

    Article  Google Scholar 

  8. Euler, L.: Principes généraux du mouvement des fluides. Mém. de l’académie des Sci. de Berlin 11, 274–315 (1755)

    Google Scholar 

  9. John, F., Nirenberg, L.: On functions of bounded mean oscillation. Commun. Pure Appl. Math. 343, 415–426 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41(7), 891–907 (1988)

    Article  MathSciNet  Google Scholar 

  11. Kerr, R.M.: Evidence for a singularity of the three-dimensional, incompressible Euler equations. Phys. Fluids A 5(7), 1725–1746 (1993)

    Article  MathSciNet  Google Scholar 

  12. Kozono, H., Taniuchi, Y.: Bilinear estimates in BMO and the Navier–Stokes equations. Math. Z. 235(1), 173–194 (2000)

    Article  MathSciNet  Google Scholar 

  13. Kozono, H., Taniuchi, Y.: Limiting case of the Sobolev inequality in BMO, with applications to the Euler equations. Commun. Math. Phys. 214, 191–200 (2000)

    Article  MathSciNet  Google Scholar 

  14. Luo, G., Hou, T.: Toward the finite-time blowup of the 3D axisymmetric Euler equations: a numerical investigation. Multiscale Model. Simul. 12(4), 1722–1776 (2014)

    Article  MathSciNet  Google Scholar 

  15. Majda, A., Bertozzi, A.: Vorticity and Incompressible Flow. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  16. Stein, E.M.: Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton (1993)

    MATH  Google Scholar 

  17. Tao, T.: Finite time blowup for Lagrangian modifications of the three-dimensional Euler equation. Ann. PDE 2(9), 1–79 (2016)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

Chae was partially supported by NRF grants 2021R1A2C1003234, while Wolf has been supported supported by the NRF grand 2017R1E1A1A01074536. The authors declare that they have no conflict of interest. No data sets were generated or analyzed during the current study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongho Chae.

Additional information

Communicated by Y. Giga.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Gronwall type lemma

Lemma A.1

Let \( -\infty<a<b<+\infty \). Let \( f\in L^1(a,b)\) and \( k\in {\mathbb {N}}\). Then it holds

$$\begin{aligned} \int \limits _{a}^{b} \int \limits _{a}^{t_1} \cdots \int \limits _{a}^{t_{ k-1}} \prod _{ j=1}^{ k} f(t_j) d t_k d t_{ k-1} \ldots d t_1 = \frac{1}{k!} \left( \int \limits _{a}^{b} f(t) dt\right) ^k. \end{aligned}$$
(A.1)

Proof

We prove the assertion by induction. For \( k=1\) (A.1) is obvious. Assume the assertion holds for \( k-1\). Using the hypothesis of induction, we find

$$\begin{aligned} \int \limits _{a}^{b} \int \limits _{a}^{t_1} \cdots \int \limits _{a}^{t_{ k-1}} \prod _{ j=1}^{ k} f(t_j) d t_k d t_{ k-1} \ldots d t_1&= \int \limits _{a}^{b} f(t_1)\left\{ \int \limits _{a}^{t_1} \cdots \int \limits _{a}^{t_{ k-1}} \prod _{ j=2}^{ k} f(t_j) d t_k d t_{ k-1} \ldots dt_2 \right\} d t_1 \nonumber \\&= \frac{1}{(k-1)!}\int \limits _{a}^{b} f(s) \left( \int \limits _{a}^{s} f(t) dt\right) ^{ k-1} ds. \end{aligned}$$
(A.2)

Applying integration by parts, we calculate

$$\begin{aligned} \int \limits _{a}^{b} f(s) \left( \int \limits _{a}^{s} f(t) dt\right) ^{ k-1} ds&=\int \limits _{a}^{b} \frac{d}{ds} \int \limits _{a}^s f(\tau ) d\tau \left( \int \limits _{a}^{s} f(t) dt\right) ^{ k-1} ds\\&= \left( \int \limits _{a}^{b} f(t) dt\right) ^k - (k-1) \int \limits _{a}^{b} f(s) \int \limits _{a}^s f(\tau ) d\tau \left( \int \limits _{a}^{s} f(t) dt\right) ^{ k-2} ds\\&= \left( \int \limits _{a}^{b} f(t) dt\right) ^k - (k-1) \int \limits _{a}^{b} f(s) \left( \int \limits _{a}^{s} f(t) dt\right) ^{ k-1} ds. \end{aligned}$$

This yields

$$\begin{aligned} \int \limits _{a}^{b} f(s) \bigg (\int \limits _{a}^{s} f(t) dt\bigg )^{ k-1} ds = \frac{1}{k} \left( \int \limits _{a}^{b} f(t) dt\right) ^k. \end{aligned}$$
(A.3)

Replacing the integral on the right-hand side of (A.2) by the right-hand side of (A.3), we obtain (A.1) for k. Hence by induction (A.1) holds for all \( k\in {\mathbb {N}}\). \(\square \)

Lemma A.2

(Iteration lemma) Let \( \beta _m: [t_0, t_1] \rightarrow {\mathbb {R}}\), \( m\in {\mathbb {N}}\cup \{ 0\}\) be a sequences of bounded functions. Suppose there exists \(0<K=K(t) <+\infty \) for each \(t\in [t_0, t_1)\) such that

$$\begin{aligned} |\beta _m(t)| < K(t)^m \qquad \forall t\in [t_0, t_1), \forall m\in {\mathbb {N}}. \end{aligned}$$
(A.4)

Furthermore let \( a\in L^1(t_0, t_1)\) with \(a(t)\ge 0\) for almost every \(t\in [t_0, t_1]\). We assume that the following recursive integral inequality holds true for a constant \( C>0\)

$$\begin{aligned} \beta _{ m}(t) \le Cm + \int \limits _{t_0}^{t} a(s) \beta _{ m+1}(s) ds, \quad m\in {\mathbb {N}}\cup \{ 0\}. \end{aligned}$$
(A.5)

Then the following inequality holds true for all \( t\in [t_0,t_1]\)

$$\begin{aligned} \beta _0(t) \le C \int \limits _{t_0}^{t} a(s) ds \, e^{\int \limits _{t_0}^{t} a(s ) ds }. \end{aligned}$$
(A.6)

Proof

Iterating (A.5) m-times, and applying Lemma A.1, we see that for each \(t\in [t_0, t_1)\) it follows

$$\begin{aligned} \beta _0(t)&\le C\int \limits _{t_0}^{t} a(s_1) ds_1 + 2C\int \limits _{t_0}^{t} \int \limits ^{s_1}_{t_0} a(s_1) a(s_2) ds_2 ds_1 \nonumber \\&\quad + \cdots + Cm\int \limits _{t_0}^{t} \int \limits ^{s_1}_{t_0} \ldots \int \limits ^{s_{ m-1}}_{t_0} a(s_1) a(s_2) \ldots a(s_m)ds_{ m} \ldots ds_2 ds_1 \nonumber \\&\quad + \int \limits _{t_0}^{t} \int \limits ^{s_1}_{t_0} \ldots \int \limits ^{s_{ m}}_{t_0} a(s_1) a(s_2) \ldots a(s_{ m+1}) \beta _{ m+1}(s_{ m+1}) ds_{ m+1} \ldots ds_2 ds_1 \nonumber \\&= \sum _{k=1}^{m}\frac{C}{(k-1) !} \bigg (\int \limits _{t_0}^{t} a(s) ds \bigg )^{ k}+ J_m(t), \end{aligned}$$
(A.7)

where

$$\begin{aligned} |J_m (t)|&\le \sup _{0<s< t} |\beta _{m+1}(s)| \int \limits _{t_0}^{t} \int \limits ^{s_1}_{t_0} \ldots \int \limits ^{s_{ m}}_{t_0} a(s_1) a(s_2) \ldots a(s_{ m+1}) ds_{ m+1} \ldots ds_2 ds_1\\&\le \frac{ 1}{(m+1)!} \bigg (\sup _{0<s< t} K(s) \int \limits _{t_0}^{t} a(s ) ds\bigg )^{ m+1} \rightarrow 0\quad \hbox { as}\ \quad m\rightarrow +\infty \end{aligned}$$

for each \(t\in [t_0, t_1)\). Therefore,

$$\begin{aligned} \beta _0(t)\le \sum _{k=1} ^\infty \frac{C}{(k-1) !} \bigg (\int \limits _{t_0}^{t} a(s) ds \bigg )^{ k}= C \int \limits _{t_0}^{t} a(s) ds\, e^{\int \limits _{t_0}^{t} a(s ) ds}. \end{aligned}$$

\(\square \)

Gagliardo–Nirenberg’s inequality with cut-off

Lemma B.1

Let \( \psi \in C^{\infty }_{\mathrm{c}}({\mathbb {R}}^{n})\) with \( 0 \le \psi \le 1\), and \(k \ge 1 \). For all \( u\in W^{1,\, q}({\mathbb {R}}^{n})\cap L^2({\mathbb {R}}^{n})\), \( 2< q < +\infty \), and for \( m \ge k\frac{n(q-2)+ 2q}{2q}\) it holds

$$\begin{aligned} \Vert u \psi ^{ m-k}\Vert _{ q} \le c \Vert u \psi ^{ m - k\frac{n(q-2)+ 2q}{2q}}\Vert _{ 2}^{ \frac{2q}{n(q-2)+ 2q}}\Vert \nabla u \psi ^m\Vert _{ q}^{ \frac{n(q-2)}{n(q-2)+ 2q}} + c\Vert \nabla \psi \Vert _{ \infty }^{\frac{n(q-2)}{2q}}\Vert u \psi ^{ m - k\frac{n(q-2)+ 2q}{2q}}\Vert _{ 2} . \end{aligned}$$
(B.1)

Proof

Let \( \psi \in C^{\infty }_{\mathrm{c}}( {\mathbb {R}}^{n})\) with \( 0 \le \psi \le 1\), and \( k \ge 1\). Let \( m \ge k\frac{n(q-2)+ 2q}{2q}\). By means of Hölder’s inequality we estimate

$$\begin{aligned} \Vert u \psi ^{ m-k} \Vert _{ q}&\le \Vert u \psi ^{m - k- k\frac{n(q-2)}{2q} }\Vert _{ 2}^{ \frac{2}{n(q-2)+2}} \Vert u \psi ^{m- k + \frac{k}{q}} \Vert _{ \frac{nq}{n-1}}^{ \frac{n(q-2)}{n(q-2)+2}}\\&\le c\Vert u \psi ^{m - k- k\frac{n(q-2)}{2q} }\Vert _{ 2}^{ \frac{2}{n(q-2)+2}} \Vert w\Vert _{ \frac{n}{n-1}}^{ \frac{n(q-2)}{qn(q-2)+2q}}, \end{aligned}$$

where \( w = | u|^q \psi ^{qm- kq + k}\). By Sobolev’s inequality along with Hölder’s inequality we infer

$$\begin{aligned} \Vert w\Vert _{ \frac{n}{n-1}}&\le \Vert \nabla w\Vert _{ 1}\\&\le c\int \limits _{ {\mathbb {R}}^{n}} | u|^{ q-1}| \nabla u| \psi ^{qm- kq + k} dx + c \Vert \nabla \psi \Vert _{ \infty }\Vert u \psi ^{ m-k}\Vert ^q_{ q}\\&\le c\Vert u \psi ^{ m-k}\Vert _{ q}^{ q-1} \Vert \nabla u \psi ^m\Vert _{ q} + c \Vert \nabla \psi \Vert _{ \infty }\Vert u \psi ^{ m-k}\Vert ^q_{ q}. \end{aligned}$$

Combining the last two estimates and applying Young’s inequality, we obtain the assertion (B.1). \(\square \)

Lemma B.2

Let \( u \in W^{1,\, q}(B(\rho ))\), \( n< q < +\infty \) such that \( \nabla \cdot u =0\) almost everywhere in \( B(\rho )\). Then for every \( \psi \in C^{\infty }_c(B(\rho ))\) with \( 0 \le \psi \le 1\) and \( m \ge \frac{q}{2}\) it holds

$$\begin{aligned} \Vert u \psi ^{ m}\Vert _{ \infty } \le c\Vert u \psi ^{ m- \frac{q}{2}}\Vert _{ 2}^{ \frac{2(q-n)}{2q-2n+nq } } \Vert \nabla u \psi ^{ m}\Vert ^ { \frac{nq}{2q-2n+nq}}_{ q} + c\Vert \nabla \psi \Vert _{ \infty }^{ \frac{n}{2}} \Vert u \psi ^{ m-\frac{q}{2}}\Vert _{ 2}. \end{aligned}$$
(B.2)

Proof

By virtue of Gagliardo-Nirenberg’s inequality we estimate

$$\begin{aligned} \Vert u \psi ^{ m}\Vert _{ \infty }&\le c \Vert u \psi ^{ m}\Vert _{ q}^{ 1- \frac{n}{q}} \Vert \nabla ( u \psi ^{ m})\Vert _{ q}^{ \frac{n}{q}} \\&\le c\Vert u \psi ^{ m-1} \Vert _{ q}^{ 1- \frac{n}{q}} \Vert \nabla u \psi ^{ m}\Vert ^{ \frac{n}{q}}_{ q} + c\Vert \nabla \psi \Vert _{ \infty }^{ \frac{n}{q}} \Vert u \psi ^{ m-1}\Vert _{ q}. \end{aligned}$$

From \(L^q\)-interpolation we find

$$\begin{aligned} \Vert u \psi ^{ m-1}\Vert _{ q} \le \Vert u \psi ^{ m- \frac{q}{2}} \Vert _{ 2}^{ \frac{2}{q }} \Vert u \psi ^{ m}\Vert _{ \infty }^{ 1- \frac{2}{q}}. \end{aligned}$$

Combining the two estimates above, and applying Young’s inequality, we obtain the assertion of the lemma. \(\square \)

Although the following result of embedding of BMO(B(r)) into \( L^p(B(r))\) might be well known, for readers convenience we give a short proof.

Lemma B.3

Let \( u\in BMO(B(r))\). Then \( u\in \cap _{ 1 \le q< \infty } L^q(B(r))\), and it holds

$$\begin{aligned} \Vert u\Vert _{ L^q(B(r))} \le c r^{ \frac{n}{q}} | u|_{BMO(B(r))}+ c r ^{ \frac{n}{q}-n}\Vert u\Vert _{ L^1(B(r))} = c r^{ \frac{n}{q}} \Vert u\Vert _{ BMO(B(r))}. \end{aligned}$$
(B.3)

Proof

Let \( u\in BMO(B(1))\). By \( U\in BMO\) we denote the extension defined in Section 2. By John–Nirenberg’s inequality [9] it holds

$$\begin{aligned} m(\{x\in Q(2) \,|\, | U - U_{ Q(2)} | > \lambda \}) \le c_1 e^{ - \frac{c_2 \lambda }{| U| _{ BMO(Q(2))}}}\quad \forall \,\lambda \in (0, +\infty ) \end{aligned}$$

with constants \( c_1, c_2\), depending on n and q only, where \(m(\cdot )\) denotes the Lebesgue measure in \({\mathbb {R}}^n\), and Q(r) denotes the cube with the center at origin and the side length 2r. Multiplying both sides by \( q\lambda ^{ q-1}\), integrating the result over \( (0, +\infty )\), using a suitable change of coordinates, and employing (2.4), we arrive at

$$\begin{aligned} \Vert U- U _{ Q(2)} \Vert _{ L^q(Q(2))}^q&= q \int \limits _{0}^{\infty } \lambda ^{ q-1}m(\{x\in Q(2) \,|\, | U- U _{ Q(2)} | > \lambda \} )\\&\le q | U| _{ BMO(Q(2))}^q \int \limits _{0}^{\infty } \lambda ^{ q-1}c_1 e^{ - c_2 \lambda } \\&\le c \Vert u\Vert ^q_{ BMO(B(1))}. \end{aligned}$$

Accordingly,

$$\begin{aligned} \Vert u\Vert _{ L^q(B(1))} \le \Vert U- U_{ Q(2)} \Vert _{ L^q(Q(2))}+ c| U_{ Q(2)}| \le c \Vert u\Vert _{ BMO(B(1))}. \end{aligned}$$

Hence, (B.3) follows from the above estimate by using a standard scaling argument. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, D., Wolf, J. Localized non blow-up criterion of the Beale-Kato-Majda type for the 3D Euler equations. Math. Ann. 383, 837–865 (2022). https://doi.org/10.1007/s00208-021-02182-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-021-02182-x

Keywords

Mathematics Subject Classification

Navigation