Skip to main content
Log in

Electronic and transport properties of chemically functionalised zig-zag graphene nanoribbons: First principle study

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In this work, we have performed the chemical functionalisation of metallic graphene nanoribbons (GNRs) with different functional groups. The analysis of graphene in terms of relative stability and electronic properties has been done. The HOMO–LUMO gaps are quantitatively analysed to reveal the influence of different functional groups including hydroxyl, carboxyl and hydrogen sulphide groups. Interestingly, the influence of edge functionalisation on the HOMO–LUMO gap of zig-zag graphene nanoribbons (ZGNRs) presents significant change using density functional theory (DFT). Understanding the electronic properties in terms of density of states and band structure of functionalised graphene is of great relevance today. It is found that the geometrical structures and electronic properties of the GNRs could be significantly changed with the oxygen containing group. With the carboxyl-functionalised GNRs, the interaction leads to a decrement in the HOMO–LUMO gap of graphene. This fact makes GNR a possible candidate for nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. D A Abanin and L S Levitov, J. Sci. 317, 641 (2007)

    ADS  Google Scholar 

  2. R Chowdhury, S Adhikari, P Rees and S P Wilks, J. Phys. Res. B 83, 045401-1 (2011)

    Article  ADS  Google Scholar 

  3. S Bhandary, S Ghosh, H Herper, H Wende, O Eriksson and B Sanyal, J. Phys. Rev. Lett. 107, 257202-1 (2011)

    Article  ADS  Google Scholar 

  4. K S Novoselov, A K Geim, S V Morozov, D Jiang, M I Katsnelson, I V Grigorieva, S V Dubonos and A A Firsov, J. Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  5. A K Geim and K S Novoselov, J. Nature Mater. 6, 183 (2007)

    Article  ADS  Google Scholar 

  6. Y Zhang, Y-W Tan, H L Stormer and P Kim, J. Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  7. Y-W Son, M L Cohen and S G Louie, J. Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  8. Y-W Son, M L Cohen and S G Louie, Phys. Rev. Lett. 97, 089901 (2006)

    Article  Google Scholar 

  9. Z Li, H Qian, J Wu, B-L Gu and W Duan, J. Phys. Rev. Lett. 100, 206802 (2008)

    Article  ADS  Google Scholar 

  10. K S Novoselov, A K Geim, S V Morozov, D Jiang, Y Zhang, S V Dubonos, I V Grigorieva and A A Firsov, J. Sci. 306, 666 (2004)

    ADS  Google Scholar 

  11. K Bolotin, K Sikes, Z Jiang, M Klima, G Fudenberg, J Hone, P Kim and H L Stormer, J. Solid State Commun. 146, 351 (2008)

    Article  ADS  Google Scholar 

  12. N M R Peres, A H C Neto and F Guinea, J. Phys. Rev. B 73, 195411-1 (2006)

    Article  ADS  Google Scholar 

  13. H B Heersche, P J Herrero, J B Oostinga, L M K Vandersypen and A F Morpurgo, J. Solid State Commun. 143, 72 (2007)

    Article  ADS  Google Scholar 

  14. K S Novoselov, A K Geim, S V Morozov, D Jiang, M I Katsnelson, I V Grigorieva, S V Dubonos and A A Firsov, J. Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  15. X Jia, M Hofmann, V Meunier, B G Sumpter, J C Delgado, J M R Herrera, H Son, Y P Hsieh, A Reina, J Kong, M Terrones and M S Dresselhaus, Science 323, 1701 (2009)

    Article  ADS  Google Scholar 

  16. B L Ci, L Song, D Jariwala, A L Elias, W Gao, M Terrones and P M Ajayan, J. Adv. Mater. 21, 1 (2009)

    Article  Google Scholar 

  17. M Fujita, K Wakabayashi, K Nakada and K Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996)

    Article  ADS  Google Scholar 

  18. R Saito, M Fujita, G Dresselhaus and M S Dresselhaus, J. Appl. Phys. Lett. 60, 2204 (1992)

    Article  ADS  Google Scholar 

  19. D J Klein, Chem. Phys. Lett. 217, 261 (1994)

    Article  ADS  Google Scholar 

  20. D Gunlycke, J Li, J W Mintmire and C T White, J. Appl. Phys. Lett. 91, 112108, (2007)

    Article  ADS  Google Scholar 

  21. N Gorjizadeh, A A Farajian, K Esfarjani and Y Kawazoe, J. Phys. Rev. B 78, 155427, (2008)

    Article  ADS  Google Scholar 

  22. M H Wu, Y Pei and X C Zeng, J. Am. Chem. Soc. 132, 5554 (2010)

    Article  Google Scholar 

  23. O Hod, V Barone, J E Peralta and G E Suseria, J. Nano Lett7, 2295 (2007)

    Article  ADS  Google Scholar 

  24. E Kan, H Xiang, F Wu, C Lee, J Yang and M-H Whangbo, J. Appl. Phys. Lett. 96, 102503 (2010)

    Article  ADS  Google Scholar 

  25. B Xu, J Yin, Y D Xia, X G Wan, K Jiang and Z G Liu, J. Appl. Phys. Lett. 96, 163102 (2010)

    Article  ADS  Google Scholar 

  26. F Cervantes-Sodi, G Csányi, S Piscanec and A C Ferrari, J. Phys. Rev. B 77, 165427 (2008)

  27. J Feng, H Dong, L Yu and L Dong, J. Mater. Chem. C 5, 5984 (2017)

    Article  Google Scholar 

  28. Q Gao and J Guo, APL Mater. 2, 056105 (2014)

    Article  ADS  Google Scholar 

  29. R B dos Santos, R Rivelino, F de B Mota and G K Gueorguiev, J. Phys. Chem. A 116, 9080 (2012)

    Article  Google Scholar 

  30. H Tachikawa and T Iyama, Solid State Sci. 28, 41 (2014)

    Article  Google Scholar 

  31. L Murugan, S Lakshmipathi and S K Bhatia, RSC Adv. 4, 39576 (2014)

    Article  ADS  Google Scholar 

  32. A Mathkar, T N Narayanan, L B Alemany, P Cox, P Nguyen, G Gao, P Chang, R Romero-Aburto, S A Mani and P M Ajayan, Part. Part. Syst. Charact. 30, 266 (2013)

    Article  Google Scholar 

  33. H Abdelsalam, V A Saroka and W O Younis, Superlatt. Microstruct. 129, 54 (2019)

    Article  ADS  Google Scholar 

  34. S S Chauhan, S Ferwani and P Srivastava, Pramana – J. Phys93: 35 (2019)

    Article  ADS  Google Scholar 

  35. S S Chauhan, S Ferwani and P Srivastava, Pramana – J. Phys. 93: 45 (2019)

    Article  ADS  Google Scholar 

  36. Z Klusek, Z Waqar, E A Denisov, T N Kompaniets, I V Makarenko, A N Titkov and A S Bhatti, J. Appl. Surf. Sci. 161, 508 (2000)

    Article  ADS  Google Scholar 

  37. K A Ritter and W Lyding, J. Nature Mater. 8, 235 (2008)

    Article  ADS  Google Scholar 

  38. H Yang, A J Mayne, M Boucherit, G Comtet, G Dujardin and Y Kuk, J. Nano Lett. 10, 943 (2010)

    Article  ADS  Google Scholar 

  39. R C Longo, J Carrete and L J Gallego, J. Chem. Phys. 134, 024704-1 (2011)

    Article  ADS  Google Scholar 

  40. J P Perdew and A Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  41. N Fujita, P J Hasnip, M I J Probert and J Yuan, J. Phys. Condens. Matter 27, 305301 (2015)

  42. J Feng, H Dong, L Yu and L Dong, J. Mater. Chem. C 5, 5984 (2017)

Download references

Acknowledgements

Present research work is funded by M.P. Council of Science and Technology, Bhopal, India. The authors are also thankful to Computational Nano Science and Technology Lab (CNTL) at ABV Indian Institute of Information Technology & Management (ABV-IITM), Gwalior for computational facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyendra Singh Chauhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S.S., Narwariya, P., Srivasatava, A.K. et al. Electronic and transport properties of chemically functionalised zig-zag graphene nanoribbons: First principle study. Pramana - J Phys 95, 68 (2021). https://doi.org/10.1007/s12043-021-02109-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-021-02109-w

Keywords

PACS Nos

Navigation