Skip to main content
Log in

Preparation, characterization and evaluation of a novel CMC/Chitosan-α-Fe2O3 nanoparticles-coated 17–4 PH stainless-steel foam

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

In this study, we fabricated a novel CMC/Chitosan-α-Fe2O3 nanoparticles (NPs)-coated 17–4 PH stainless-steel foam. The CMC/Chitosan matrix was preferred as a stabilizing role in the uniform dispersion of α-Fe2O3 NPs in the colloidal solution. The BET, SEM/EDX, XRD, and FT-IR techniques were used to determine the functional groups and surface of the nanostructure. The α-Fe2O3 NPs were uniformly dispersed and had a spherical shape with an average particle size of 10–20 nm with a surface area of 180.37 m2/g. Additionally, we examined to identify the physicochemical properties of the α-Fe2O3 NPs under ultrasonic irradiation. According to SEM results, we found that the average particle size of CMC/Chitosan-α-Fe2O3 NPs was between 10 and 20 nm with a spherical shape. We observed the effects of the operating parameters such as the concentration (0–1 ppm), mass fraction (10–20%) of silica, mass fraction (1–5%) of CTAB, temperature (25–45 °C), pH (3–10), sonication time (5–20 min), and the amplitude of sonication (10–40%). A mathematical modeling was performed, which related surface tension via the operating variables. The critical micelle concentrations were found 0.399, 0.428, and 0.573 ppm for mass fractions 10, 15, and 20% of silica, respectively. An error analysis was conducted in order to evaluate the physicochemical properties of the constructed models. Results showed that the effect of ultrasonic irradiation on the surface tension of biopolymer blend based α-Fe2O3 NPs and the design of uniform stainless-steel foam with α-Fe2O3 NPs coatings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Israel LL, Galstyan A, Holler E, Ljubimova JY (2020) Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release 320:45–62. https://doi.org/10.1016/j.jconrel.2020.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Phul R, Shrivastava V, Farooq U, Sardar M, Kalam A, Al-Sehemi AG, Ahmad T (2019) One pot synthesis and surface modification of mesoporous iron oxide nanoparticles. Nano-Struct Nano-Objects 19:100343. https://doi.org/10.1016/j.nanoso.2019.100343

    Article  CAS  Google Scholar 

  3. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  4. Alphandéry E (2020) Iron oxide nanoparticles for therapeutic applications. Drug Discovery Today 25(1):141–149. https://doi.org/10.1016/j.drudis.2019.09.020

    Article  CAS  PubMed  Google Scholar 

  5. Guo L, Chen H, He N, Deng Y (2018) Effects of surface modifications on the physicochemical properties of iron oxide nanoparticles and their performance as anticancer drug carriers. Chin Chem Lett 29(12):1829–1833. https://doi.org/10.1016/j.cclet.2018.10.038

    Article  CAS  Google Scholar 

  6. Navarro-Palomares E, González-Saiz P, Renero-Lecuna C, Martín-Rodríguez R, Aguado F, González-Alonso D, Barquín LF, González J, López MB, Valiente R (2020) Dye-doped biodegradable nanoparticle SiO 2 coating on zinc-and iron-oxide nanoparticles to improve biocompatibility and for in vivo imaging studies. Nanoscale 12(10):6164–6175. https://doi.org/10.1039/c9nr08743e

    Article  CAS  PubMed  Google Scholar 

  7. Ali I (2018) Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water: batch and column operations. J Mol Liq 71:677–685. https://doi.org/10.1016/j.molliq.2018.09.021

    Article  CAS  Google Scholar 

  8. Burakova EA, Dyachkova TP, Rukhov AV, Tugolukov EN, Galunin EV, Tkachev AG, Ali I (2018) Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J Mol Liq 253:340–346. https://doi.org/10.1016/j.molliq.2018.01.062

    Article  CAS  Google Scholar 

  9. Ali I, Suhail M, Alothman ZA, Alwarthan A (2018) Recent advances in syntheses, properties and applications of TiO2 nanostructures. RSC Adv 8(53):30125–30147. https://doi.org/10.1039/c8ra06517a

    Article  CAS  Google Scholar 

  10. Ali I, Alharbi OM, Alothman ZA, Alwarthan A (2018) Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Coll Surf B Biointerfaces 171:606–613. https://doi.org/10.1016/j.colsurfb.2018.07.071

    Article  CAS  Google Scholar 

  11. Ali I, Kucherova A, Memetov N, Pasko T, Ovchinnikov K, Pershin V, Kuznetsov D, Galunin E, Grachev V, Tkachev A (2019) Advances in carbon nanomaterials as lubricants modifiers. J Mol Liq 279:251–266. https://doi.org/10.1016/j.molliq.2019.01.113

    Article  CAS  Google Scholar 

  12. Ali I, Alharbi OM, Alothman ZA, Badjah AY (2018) Kinetics, thermodynamics, and modeling of amido black dye photodegradation in water using Co/TiO2 nanoparticles. Photochem Photobiol 94(5):935–941. https://doi.org/10.1111/php.12937

    Article  CAS  PubMed  Google Scholar 

  13. Lassoued A, Dkhil B, Gadri A, Ammar S (2017) Control of the shape and size of iron oxide (α-Fe2O3) nanoparticles synthesized through the chemical precipitation method. Results Phys 7:3007–3015. https://doi.org/10.1016/j.rinp.2017.07.066

    Article  Google Scholar 

  14. Meyerstein D, Adhikary J, Burg A, Shamir D, Albo Y (2020) Zero-valent iron nanoparticles entrapped in SiO2 sol-gel matrices: a catalyst for the reduction of several pollutants. Catal Commun 133:105819. https://doi.org/10.1016/j.catcom.2019.105819

    Article  CAS  Google Scholar 

  15. Dolores R, Raquel S, Adianez GL (2015) Sonochemical synthesis of iron oxide nanoparticles loaded with folate and cisplatin: effect of ultrasonic frequency. Ultrason Sonochem 23:391–398. https://doi.org/10.1016/j.ultsonch.2014.08.005

    Article  CAS  PubMed  Google Scholar 

  16. Ahmed N, Ahmad NM, Fessi H, Elaissari A (2015) In vitro MRI of biodegradable hybrid (iron oxide/polycaprolactone) magnetic nanoparticles prepared via modified double emulsion evaporation mechanism. Colloids Surf B 130:264–271. https://doi.org/10.1016/j.colsurfb.2015.04.022

    Article  CAS  Google Scholar 

  17. Szewczyk-Nykiel A (2014) The effect of the addition of boron on the densification, microstructure and properties of sintered 17–4 PH stainless steel. Czasopismo Techniczne 13:85–96. https://doi.org/10.4467/2353737XCT.14.293.3381

    Article  Google Scholar 

  18. Zhang Q, Hu Z, Su W, Zhou H, Liu C, Yang Y, Qi X (2017) Microstructure and surface properties of 17–4PH stainless-steel by ultrasonic surface rolling technology. Surf Coat Technol 321:64–73. https://doi.org/10.1016/j.surfcoat.2017.04.052

    Article  CAS  Google Scholar 

  19. Gu H, Gong H, Pal D, Rafi K, Starr T, Stucker B (2013) Influences of energy density on porosity and microstructure of selective laser melted 17–4PH stainless steel. In 2013 Solid Freeform Fabrication Symposium.

  20. Vieira MT, Martins AG, Barreiros FM, Matos M, Castanho JM (2008) Surface modification of stainless-steel powders for microfabrication. J Mater Process Technol 201:651–656. https://doi.org/10.1016/j.jmatprotec.2007.11.162

    Article  CAS  Google Scholar 

  21. Karakus S, Ilgar M, Tan E, Kilislioglu A (2018) Sonochemical preparation of α-Fe2 O3 nanoparticles in a dual biopolymer matrix. Curr Trends Chem Eng Process Technol. DOI: 10.29011.CTCEPT-107/100007

  22. Le TTY, Hussain S, Lin SY (2019) A study on the determination of the critical micelle concentration of surfactant solutions using contact angle data. J Mol Liq 294:111582. https://doi.org/10.1016/j.molliq.2019.111582

    Article  CAS  Google Scholar 

  23. Demirbas E, Kobya M, Konukman AES (2008) Error analysis of equilibrium studies for the almond shell activated carbon adsorption of Cr (VI) from aqueous solutions. J Hazard Mater 154(1–3):787–794. https://doi.org/10.1016/j.jhazmat.2007.10.094

    Article  CAS  PubMed  Google Scholar 

  24. Kapoor A, Yang RT (1989) Correlation of equilibrium adsorption data of condensible vapours on porous adsorbents. Gas Sep Purif 3(4):187–192. https://doi.org/10.1016/0950-4214(89)80004-0

    Article  CAS  Google Scholar 

  25. Paluri P, Ahmad KA, Durbha KS (2020) Importance of estimation of optimum isotherm model parameters for adsorption of methylene blue onto biomass derived activated carbons: comparison between linear and non-linear methods. Biomass Conv Biorefinery. https://doi.org/10.1007/s13399-020-00867-y

    Article  Google Scholar 

  26. Karakuş S (2019) A novel ZnO nanoparticle as drug nanocarrier in therapeutic applications: kinetic models and error analysis. J Turk Chem Soc Sect A Chem 6(2):119–132. https://doi.org/10.18596/jotcsa.405505

    Article  CAS  Google Scholar 

  27. Matsushita T, Fujibayashi S, Kokubo T (2017) Titanium foam for bone tissue engineering. In: Metallic Foam Bone, 1st edn. Woodhead Publishing, pp 111–130. https://doi.org/10.1016/B978-0-08-101289-5.00004-4

  28. Halim FSA, Chandren S, Nur H (2020) Carbon-containing-titania coated stainless-steel prepared by high voltage powder spray coating and its adhesion phenomena. Prog Org Coat 147:105782. https://doi.org/10.1016/j.porgcoat.2020.105782

    Article  CAS  Google Scholar 

  29. Tang S, Chang X, Li M, Ge T, Niu S, Wang D, Jiang Y, Sun S (2021) Fabrication of calcium carbonate coated-stainless-steel mesh for efficient oil-water separation via bacterially induced biomineralization technique. Chem Eng J 405:126597. https://doi.org/10.1016/j.cej.2020.126597

    Article  CAS  Google Scholar 

  30. Rezaei A, Golenji RB, Alipour F, Hadavi MM, Mobasherpour I (2020) Hydroxyapatite/hydroxyapatite-magnesium double-layer coatings as potential candidates for surface modification of 316 LVM stainless-steel implants. Ceram Int 46(16):25374–25381. https://doi.org/10.1016/j.ceramint.2020.07.005

    Article  CAS  Google Scholar 

  31. Tran NG, Chun DM (2020) Simple and fast surface modification of nanosecond-pulse laser-textured stainless-steel for robust superhydrophobic surfaces. CIRP Ann 69(1):525–528. https://doi.org/10.1016/j.cirp.2020.04.012

    Article  Google Scholar 

  32. Asl SM, Ganjali M, Karimi M (2019) Surface modification of 316L stainless-steel by laser-treated HA-PLA nanocomposite films toward enhanced biocompatibility and corrosion-resistance in vitro. Surf Coat Technol 363:236–243. https://doi.org/10.1016/j.surfcoat.2019.02.052

    Article  CAS  Google Scholar 

  33. Gholipour-Ranjbar H, Ganjali MR, Norouzi P, Naderi HR (2016) Synthesis of cross-linked graphene aerogel/Fe2O3 nanocomposite with enhanced supercapacitive performance. Ceram Int 42(10):12097–12104. https://doi.org/10.1016/j.ceramint.2016.04.140

    Article  CAS  Google Scholar 

  34. Gibson LJ, Ashby MF (1999) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Google Scholar 

  35. Gibson LJ (2005) Biomechanics of cellular solids. J Biomech 38(3):377–399. https://doi.org/10.1016/j.jbiomech.2004.09.027

    Article  PubMed  Google Scholar 

  36. Balla VK, Bodhak S, Bose S, Bandyopadhyay A (2010) Porous tantalum structures for bone implants: fabrication, mechanical and in vitro biological properties. Acta Biomater 6(8):3349–3359. https://doi.org/10.1016/j.actbio.2010.01.046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huminic A, Huminic G, Fleaca C, Dumitrache F, Morjan I (2015) Thermal conductivity, viscosity and surface tension of nanofluids based on FeC nanoparticles. Powder Technol 284:78–84. https://doi.org/10.1016/j.powtec.2015.06.040

    Article  CAS  Google Scholar 

  38. Cui Z, Chen J, Xue Y, Gan J, Chen X, Duan H, Zhang R, Liu J, Hao J (2020) Determination of surface tension and surface thermodynamic properties of nano-ceria by low temperature heat capacity. Fluid Phase Equilib 518:112627. https://doi.org/10.1016/j.fluid.2020.112627

    Article  CAS  Google Scholar 

  39. Zhang S, Han X, Tan Y, Liang K (2018) Effects of hydrophilicity/lipophilicity of nano-TiO2 on surface tension of TiO2-water nanofluids. Chem Phys Lett 691:135–140. https://doi.org/10.1016/j.cplett.2017.11.005

    Article  CAS  Google Scholar 

  40. Yan SR, Kalbasi R, Nguyen Q, Karimipour A (2020) Sensitivity of adhesive and cohesive intermolecular forces to the incorporation of MWCNTs into liquid paraffin: experimental study and modeling of surface tension. J Mol Liq 310:113235. https://doi.org/10.1016/j.molliq.2020.113235

    Article  CAS  Google Scholar 

  41. Silva KCG, Sato ACK (2019) Sonication technique to produce emulsions: the impact of ultrasonic power and gelatin concentration. Ultrason Sonochem 52:286–293. https://doi.org/10.1016/j.ultsonch.2018.12.001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuray Beköz Üllen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 38 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karakuş, S., Albayrak, İ., Üllen, N.B. et al. Preparation, characterization and evaluation of a novel CMC/Chitosan-α-Fe2O3 nanoparticles-coated 17–4 PH stainless-steel foam. Polym. Bull. 79, 4133–4151 (2022). https://doi.org/10.1007/s00289-021-03700-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03700-2

Keywords

Navigation