Skip to main content

Advertisement

Log in

Thermal and mechanical properties of stereocomplex polylactide enhanced by nanosilica

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Stereocomplexable polylactide (sc-PLA) with improved thermomechanical performance had been prepared by melt compounding of poly(L-lactide) (PLLA), poly(D-lactide) (PDLA), and nanosilica. The silica nanoparticles dispersed evenly in the sc-PLA matrix and there were no air bubbles because of good compatibility between nanosilica and sc-PLA. The aggregates size of nanosilica increased with increasing nanosilica content. The introduction of nanosilica facilitated the formation of stereocomplex, which was manifested as the degree of crystallinity of sc-PLA increased from 17.0 to 24.3% as the nanosilica content increased from 0 to 10 wt%. Thermal stability of sc-PLA was greatly improved by adding nanosilica, and the onset of decomposition temperature of sc-PLA/silica nanocomposites was ~33 °C higher than that of neat sc-PLA. Superior storage modulus was found for sc-PLA/silica nanocomposites compared to neat sc-PLA. The tensile strength and modulus of sc-PLA nanocomposites were greatly improved by the addition of nanosilica, but the elongation at break decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Williams CH, Hillmyer MA (2008) Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym Rev 48:1–10

    CAS  Google Scholar 

  2. Plummer CJG, Choo CKC, Boissard CIR, Bourban P-E, Mânson JAE (2013) Morphological investigation of polylactide/microfibrillated cellulose composites. Colloid Polym Sci 291:2203–2211

    CAS  Google Scholar 

  3. Peres LB, Peres LB, Faria TJ, de Assis JV, de Almeida MV, Gonçalves OH, de Araújo PHH, Sayer G (2017) PLLA/PMMA blend in polymer nanoparticles: influence of processing methods. Colloid Polym Sci 295:1621–1633

    CAS  Google Scholar 

  4. Ray SS (2012) Polylactide-based bionanocomposites: a promising class of hybrid materials. Acc Chem Res 45:1710–1720

    Google Scholar 

  5. Li Y, Zhao L, Han C, Yu Y (2020) Biodegradable blends of poly(butylene adipate-co-terephthalate) and stereocomplex polylactide with enhanced rheological, mechanical properties and thermal resistance. Colloid Polym Sci 298:463–475

    CAS  Google Scholar 

  6. Urayama H, Moon S-I, Kimura Y (2003) Microstructure and thermal properties of polylactides with different L-and D-unit sequences: importance of the helical nature of the L-sequenced segments. Mater Eng 288:137–143

    CAS  Google Scholar 

  7. Zhao H, Liu H, Liu Y, Yang Y (2020) Blends of poly(butylene adipate-co-terephthalate) (PBAT) and stereocomplex polylactide with improved rheological and mechanical properties. RSC Adv 10:10482–10490

    CAS  Google Scholar 

  8. Michalski A, Socka M, Brzeziński M, Biel T (2018) Reversible supramolecular polylactides gels obtained via stereocomplexation. Macromol Chem Phys 219:1700607

    Google Scholar 

  9. Zhang J, Sato H, Tsuji H, Noda I, Ozaki Y (2005) Infrared spectroscopic study of CH3···O=C interaction during poly(L-lactide)/poly(D-lactide) stereocomplex formation. Macromolecules 38:1822–1828

    CAS  Google Scholar 

  10. Zhang J, Tashiro K, Tsuji H, Domb A (2007) Investigation of phase transitional behavior of poly(L-lactide)/poly(D-lactide) blend used to prepare the highly-oriented stereocomplex. Macromolecules 40:1049–1054

    CAS  Google Scholar 

  11. Li W, Sun Q, Mu B, Luo G, Xu H, Yang Y (2019) Poly(L-lactic acid) bio-composites reinforced by oligo(D-lactic acid) grafted chitosan for simultaneously improved ductility, strength and modulus. Int J Biol Macromol 131:495–504

    CAS  PubMed  Google Scholar 

  12. Rahman N, Kawai T, Matsuba G, Nishida K, Kanaya T, Watanabe H, Okamoto H, Kato M, Usuki A, Matsuda M, Nakajima K, Honma N (2009) Effect of polylactide stereocomplex on the crystallization behavior of poly(L-lactic acid). Macromolecules 42:4739–4745

    CAS  Google Scholar 

  13. Urayama H, Kanamori T, Fukushima K, Kimura Y (2003) Controlled crystal nucleation in the melt-crystallization of poly(L-lactide) and poly(L-lactide)/poly(D-lactide) stereocomplex. Polymer 44:5635–5641

    CAS  Google Scholar 

  14. Chang Y, Chen Z, Pan G, Yang Y (2019) Enhancing the recrystallization ability of bio-based polylactide stereocomplex by in situ construction of multi-block branched conformation. J Mater Sci 54:12145–12158

    CAS  Google Scholar 

  15. Andersson SR, Hakkarainen M, Inkinen S, Södergård A, Albertsson A (2010) Polylactide stereocomplexation leads to higher hydrolytic stability but more acidic hydrolysis product pattern. Biomacromolecules 11:1067–1073

    CAS  PubMed  Google Scholar 

  16. Sun Y, He C (2012) Synthesis and stereocomplex crystallization of poly(lactide)-graphene oxide nanocomposites. ACS Macro Lett 1:709–713

    CAS  Google Scholar 

  17. Kumamoto N, Chanthaset N, Ajiro H (2020) Polylactide stereocomplex bearing vinyl groups at chain ends prepared by allyl alcohol, malic acid, and citric acid. Polym Degrad Stab 180:109311

    CAS  Google Scholar 

  18. Bai L, Zhang Z, Pu J, Feng C, Zhao X, Bao R, Liu Z, Yang M, Yang W (2020) Highly thermally conductive electrospun stereocomplex polylactide fibrous film dip-coated with silver nanowires. Polymer 194:122390

    CAS  Google Scholar 

  19. Brzeziński M, Biela T (2015) Micro-and nanostructures of polylactide stereocomplexes and their biomedical applications. Polym Int 64:1667–1675

    Google Scholar 

  20. Tsuji H (2005) Poly (lactide) Stereocomplexes: formation, structure, properties, degradation, and applications. Macromol Biosci 5:569–597

  21. Monticelli O, Putti M, Gardella L, Cavallo D, Basso A, Prato M, Nitti S (2014) New stereocomplex PLA-based fibers: effect of POSS on polymer functionalization and properties. Macromolecules 47:4718–4727

    CAS  Google Scholar 

  22. da Silva AP, Montanheiro TLDA, Montagna LS, Andrade PF, Durán N, Lemes AP (2019) Effect of carbon nanotubes on the biodegradability of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) nanocomposites. J Appl Polym Sci 136:48020

    Google Scholar 

  23. Zhao Y, Qiu Z, Yang W (2008) Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). J Phys Chem B 112:16461–16468

    CAS  PubMed  Google Scholar 

  24. Wu F, Zhang S, Zhang B, Yang W, Liu Z, Yang M (2016) The effect of the grafted chains on the crystallization of PLLA/PLLA-grafted SiO2 nanocomposites. Colloid Polym Sci 294:801–813

    CAS  Google Scholar 

  25. Sun X, Huang C, Wang L, Liang L, Li Y (2020) Recent progress in graphene/polymer nanocomposites. Adv Mater 33:2001105. https://doi.org/10.1002/adma.202001105

    Article  CAS  Google Scholar 

  26. Brzeziński M, Bogusławska M, Ilčíková M, Mosnáček J, Biela T (2012) Unusual thermal properties of polylactides and polylactide stereocomplexes containing polylactide-functionalized multi-walled carbon nanotubes. Macromolecules 45:8714–8721

    Google Scholar 

  27. Brzeziński M, Biela T (2014) Polylactide nanocomposites with functionalized carbon nanotubes and their stereocomplexes: a focused review. Mater Lett 121:244–250

    Google Scholar 

  28. Li Y, Han C, Zhang X, Xu K, Bian J, Dong L (2014) Poly(L-lactide)/ poly(D-lactide)/clay nanocomposites: enhanced dispersion, crystallization, mechanical properties, and hydrolytic degradation. Polym Eng Sci 54:914–924

    CAS  Google Scholar 

  29. Bikiaris DN, Papageorgiou GZ, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis GP (2006) Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles. J Appl Polym Sci 100:2684–2696

    CAS  Google Scholar 

  30. Lai SM, Hsieh YT (2016) Preparation and properties of polylactic acid (PLA)/silica nanocomposites. J Macromol Sci B 55:211–228

    CAS  Google Scholar 

  31. Zou H, Wu S, Shen J (2008) Polymer/silica nanocomposites: preparation, characterization, properties, and applications. Chem Rev 108:3893–3957

    CAS  PubMed  Google Scholar 

  32. Wen X, Lin L, Han CY, Zhang KY, Ran XH, Li YS, Dong LS (2009) Thermomechanical and optical properties of biodegradable poly(L-lactide)/silica nanocomposites by melt compounding. J Appl Polym Sci 114:3379–3388

    CAS  Google Scholar 

  33. Li Y, Han C, Bian J, Han L, Dong L, Gao G (2013) Rheology and biodegradation of polylactide/silica nanocomposites. Polym Compos 34:1620–1628

    CAS  Google Scholar 

  34. Chrissafis K, Paraskevopoulos KM, Papageorgiou GZ, Bikiaris DN (2008) Thermal and dynamic mechanical behavior of bionanocomposites: fumed silica nanoparticles dispersed in poly(vinyl pyrrolidone), chitosan, and poly(vinylalcohol). J Appl Polym Sci 110:1739–1749

    CAS  Google Scholar 

  35. Han L, Han C, Cao W, Wang X, Bian J, Dong L (2012) Preparation and characterization of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate)/ silica nanocomposites. Polym Eng Sci 52:250–258

  36. Li Y, Han C, Bian J, Zhang X, Han L, Dong L (2013) Crystallization and morphology studies of biodegradable poly(ε-caprolactone)/silica nanocomposites. Polym Compos 34:131–140

    Google Scholar 

  37. Anderson KS, Hillmyer MA (2006) Melt preparation and nucleation efficiency of polylactide stereocomplex crystallites. Polymer 47:2030–2035

    CAS  Google Scholar 

  38. Li Y, Han C, Yu Y, Huang D (2019) Uniaxial stretching and properties of fully biodegradable poly(lactic acid)/poly(3-hydroxybutyrate-co-4-hydroxybutyrate) blends. Int J Biol Macromol 129:1–12

    PubMed  Google Scholar 

  39. Fischer EW, Sterzel HJ, Wegner G (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemicals reactions. Kolloid Z Z Polym 251:980–990

    CAS  Google Scholar 

  40. Iturrondobeitia M, Guraya T, Okariz A, Srot V, van Aken PA, Ibarretxe J (2017) Quantitative electron tomography of PLA/clay nanocomposites to understand the effect of the clays in the thermal stability. J Appl Polym Sci 134:44691

    Google Scholar 

  41. Zhou Y, Lei L, Yang B, Li J, Ren J (2018) Preparation and characterization of polylactic acid (PLA) carbon nanotube nanocomposites. Polym Test 68:34–38

    CAS  Google Scholar 

  42. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    CAS  Google Scholar 

  43. Singh D, Somvanshi D, Singh RK, Mahanta AK, Maiti P, Misra N, Paik P (2020) Functionalized polyvinyl chloride/layered double hydroxide nanocomposites and its thermal and mechanical properties. J Appl Polym Sci 137:48894

    CAS  Google Scholar 

  44. Eckert A, Abbasi M, Mang M, Saalwächter K, Walther A (2020) Structure, mechanical properties, and dynamics of polyethylenoxide/nanoclay nacre-mimetic nanocomposites. Macromolecules 53:1716–1725

    CAS  Google Scholar 

  45. Leszczyńska A, Njuguna J, Pielichowski K, Banerjee JR (2007) Polymer/montmorillonite nanocomposites with improved thermal properties: part I. Factors influencing thermal stability and mechanisms of thermal stability improvement. Thermochim Acta 453:75–96

    Google Scholar 

  46. Venkatesan R, Rajeswari N (2019) Nanosilica-reinforced poly(butylene adipate-co-terephthalate) nanocomposites: preparation, characterization and properties. Polym Bull 76:4785–4801

    CAS  Google Scholar 

  47. Peng Z, Kong LX (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab 92:1061–1071

    CAS  Google Scholar 

  48. Fu S, Feng X, Lauke B, Mai Y (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate- polymer composites. Compos B Eng 39:933–961

    Google Scholar 

  49. Barghamadi H, Atai M, Imani M, Esfandeh M (2015) Effects of nanoparticle size and content on mechanical properties of dental nanocomposites: experimental versus modeling. Iran Polym J 24:1–12

    Google Scholar 

Download references

Funding

This work is supported by the“13th five-year” Science and Technology Research Program of the Education Department of Jilin Province (JJKH20190862KJ).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Changyu Han or Liguang Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DTD 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, L., Han, C. et al. Thermal and mechanical properties of stereocomplex polylactide enhanced by nanosilica. Colloid Polym Sci 299, 1161–1172 (2021). https://doi.org/10.1007/s00396-021-04839-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-021-04839-0

Keywords

Navigation