Skip to main content
Log in

Spatio-Spectral Limiting on Boolean Cubes

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The operator that first truncates to a neighborhood of the origin in the spatial domain then truncates to a neighborhood of the origin in the spectral domain is investigated in the case of Boolean cubes. This operator is self adjoint on the space of functions spanned by the Laplacian eigenvectors corresponding to small eigenvalues. The eigenspaces of this iterated projection operator are studied through reduced matrices based on certain invariant subspaces. They are shown to depend fundamentally on the neighborhood structure of the cube defined in terms of Hamming distance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alon, N., Dinur, I., Friedgut, E., Sudakov, B.: Graph products, Fourier analysis and spectral techniques. Geom. Funct. Anal. 14(5), 913–940 (2004)

    Article  MathSciNet  Google Scholar 

  2. Amadei, M., Manzoli, U., Merani, M.L.: On the assignment of Walsh and quasi-orthogonal codes in a multicarrier DS-CDMA system with multiple classes of users, Global Telecommunications Conference, 2002. GLOBECOM ’02. IEEE, vol. 1, pp. 841–845 (2002)

  3. Bernasconi, A., Codenotti, B.: Spectral analysis of Boolean functions as a graph eigenvalue problem. IEEE Trans. Comput. 48(3), 345–351 (1999)

    Article  MathSciNet  Google Scholar 

  4. Chen, S., Varma, R., Sandryhaila, A., Kovačević, J.: Discrete signal processing on graphs: sampling theory. IEEE Trans. Signal Process. 63(24), 6510–6523 (2015)

    Article  MathSciNet  Google Scholar 

  5. de Wolf, R.: A brief introduction to Fourier analysis on the Boolean cube. Theory Comput. Grad. Surv. 1, 1–20 (2008)

    Article  Google Scholar 

  6. Grünbaum, F.A.: Eigenvectors of a Toeplitz matrix: Discrete version of the prolate spheroidal wave functions. SIAM J. Algebraic Discret. Methods 2(2), 136–141 (1981)

    Article  MathSciNet  Google Scholar 

  7. Grünbaum, F.A.: Toeplitz matrices commuting with tridiagonal matrices. Linear Algebra Appl. 40, 25–36 (1981)

    Article  MathSciNet  Google Scholar 

  8. Gur, T., Tamuz, O.: Testing Booleanity and the uncertainty principle. Chic. J. Theoret. Comput. Sci. 14, 14 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Heil, C.: What is \(\ldots \) a frame? Notices Am. Math. Soc. 60(6), 748–750 (2013)

    Article  MathSciNet  Google Scholar 

  10. Hogan, J.A., Lakey, J.D.: Duration and Bandwidth Limiting. Prolate Functions, Sampling, and Applications. Birkhäuser, Boston (2012)

    Book  Google Scholar 

  11. Hogan, J.A., Lakey, J.D.: An analogue of Slepian vectors on Boolean hypercubes. J. Fourier Anal. Appl. 25(4), 2004–2020 (2019)

    Article  MathSciNet  Google Scholar 

  12. Hogan, J.A., Lakey, J.D.: Some invariant spaces on products of short cycles. Arxiv e-prints arXiv:2012.11752 (2020)

  13. Hogan, J.A., Lakey, J.D.: Spatio-spectral limiting on redundant cubes: a case study, Excursions in Harmonic Analysis, Volume 6: In Honor of John Benedetto’s 80th Birthday (M. Hirn, S. Li, K. Okoudjou, S. Saliani, and O. Yilmaz, eds.), Springer Nature, to appear (2020)

  14. Huang, Z., Chan, N.H.: Walsh Fourier transform of locally stationary time series. J. Time Ser. Anal. 41(2), 312–340 (2020)

    Article  MathSciNet  Google Scholar 

  15. Kushilevitz, E., Mansour, Y.: Learning decision trees using the Fourier spectrum. SIAM J. Comput. 22(6), 1331–1348 (1993)

    Article  MathSciNet  Google Scholar 

  16. Landau, H.J., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. II. Bell Syst. Tech. J. 40, 65–84 (1961)

    Article  MathSciNet  Google Scholar 

  17. Landau, H.J., Widom, H.: Eigenvalue distribution of time and frequency limiting. J. Math. Anal. Appl. 77, 469–481 (1980)

    Article  MathSciNet  Google Scholar 

  18. Leus, G., Segarra, S., Ribeiro, A., Marques, A.G.: The dual graph shift operator: Identifying the support of the frequency domain, Arxiv e-prints arXiv:1705.08987 (2017)

  19. Linial, N., Mansour, Y., Nisan, N.: Constant depth circuits, Fourier transform, and learnability. J. ACM 40(3), 607–620 (1993)

    Article  MathSciNet  Google Scholar 

  20. Mitton, M.: On the Walsh-Fourier analysis of Boolean functions. J. Discret. Math. Sci. Cryptogr. 9(3), 429–439 (2006)

    Article  MathSciNet  Google Scholar 

  21. Morettin, P.A.: Walsh-Fourier analysis and its statistical applications: comment. J. Am. Stat. Assoc. 86(414), 482–483 (1991)

    Google Scholar 

  22. Mossel, E., O’Donnell, R.: Special issue on analysis of Boolean functions: guest editors’ foreword. Theory Comput. 9, 579–585 (2013)

    Article  MathSciNet  Google Scholar 

  23. Moysiadis, T., Fokianos, K.: On locally dyadic stationary processes. IEEE Trans. Inf. Theory 63(8), 4829–4837 (2017)

    Article  MathSciNet  Google Scholar 

  24. O’Donnell, R.: Analysis of Boolean Functions. Cambridge University Press, New York (2014)

    Book  Google Scholar 

  25. Shi, J., Moura, J.M.F.: Graph signal processing: Modulation, convolution, and sampling. Arxiv preprint arXiv:1912.06762 (2019)

  26. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. IV. Extensions to many dimensions; generalized prolate spheroidal functions. Bell Syst. Tech. J. 43, 3009–3057 (1964)

    Article  MathSciNet  Google Scholar 

  27. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis, and uncertainty. V—The discrete case. Bell Syst. Tech. J. 57, 1371–1430 (1978)

    Article  Google Scholar 

  28. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty. I. Bell Syst. Tech. J. 40, 43–63 (1961)

    Article  MathSciNet  Google Scholar 

  29. Stobbe, P., Krause, A.: Learning Fourier sparse set functions. J. Mach. Learn. Res. 22, 1125–1133 (2012)

    Google Scholar 

  30. Stoffer, D.S.: Walsh-Fourier analysis and its statistical applications. J. Am. Stat. Assoc. 86(414), 461–479 (1991)

    Article  MathSciNet  Google Scholar 

  31. Thomson, D.J.: Spectrum estimation and harmonic analysis. Proc. IEEE 70, 1055–1096 (1982)

    Article  Google Scholar 

  32. Tsitsvero, M., Barbarossa, S., Di Lorenzo, P.: Signals on graphs: Uncertainty principle and sampling. IEEE Trans. Signal Process. 64, 4845–4860 (2016)

    Article  MathSciNet  Google Scholar 

  33. Wendler, C., Amrollahi, A., Seifert, B., Krause, A., Püschel, M.: Learning set functions that are sparse in non-orthogonal Fourier bases. Arxiv e-prints arXiv:2010.00439 (2020)

  34. Xu, W.Y., Chamzas, C.: On the periodic discrete prolate spheroidal sequences. SIAM J. Appl. Math. 44, 1210–1217 (1984)

    Article  MathSciNet  Google Scholar 

  35. Zemen, T., Mecklenbräuker, C.F.: Time-variant channel estimation using discrete prolate spheroidal sequences. IEEE Trans. Signal Process. 53(9), 3597–3607 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Lakey.

Additional information

Communicated by Hans G. Feichtinger.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of Some Ancillary Facts

Appendix: Proofs of Some Ancillary Facts

1.1 Projection Onto \({\mathcal {W}}_r\)

Theorem 1 can be used to compute the projection of \(\ell ^2(\Sigma _r)\) onto \({{\mathcal {W}}}_r\), the orthogonal complement of \(A_+(\ell ^2(\Sigma _{r-1}))\) in \(\ell ^2(\Sigma _r)\). The iterative procedure for achieving this is detailed in Proposition 7 below.

Lemma 4

Suppose \(f_0\) is the vertex function given by \(f_0(S)=\delta _{S,\emptyset }\), i.e., \(f_0(\emptyset )=1\) while \(f_0(S)=0\) for all \(S\ne \emptyset \). Then for all \(0\le r\le N\),

$$\begin{aligned} A_+^rf_0(R)={\left\{ \begin{array}{ll} r!&{}\hbox { if}\ R\in \Sigma _r\\ 0&{}\text { else.}\end{array}\right. } \end{aligned}$$
(A.1)

Proof

We have already seen that \(A_+(\ell ^2(\Sigma _r))\subset \ell ^2(\Sigma _{r+1})\), so that \(A_+f_0\in \ell ^2(\Sigma _1)\). Note that if \(R\in \Sigma _1\),

$$\begin{aligned} A_+f_0(R)=\sum _{S\prec R, S\sim R}f_0(S)=f_0(\emptyset )=1 \end{aligned}$$

so that (A.1) is verified when \(r=1\). Suppose now that (A.1) holds for \(r=\ell \). Then \(A_+^{\ell +1}f_0(R)=0\) if \(R\notin \Sigma _{\ell +1}\) while if \(R\in \Sigma _{\ell +1}\), we have

$$\begin{aligned} A_+^{\ell +1}f_0(R)=\sum _{S\prec R, S\sim R}A_+^\ell f_0(S)&=\sum _{S\in \Sigma _\ell ,\,S\sim R}f_0(S)\\&=\ell !|\{S\in \Sigma _\ell :\ S\sim R\}|=\ell !(\ell +1)=(\ell +1)!, \end{aligned}$$

i.e., (A.1) is verified for \(r=\ell +1\). We conclude that (A.1) holds for all \(0\le r\le N\). \(\square \)

Proposition 7

Let \(f\in \ell ^2(\Sigma _r)\) \((r<N/2)\). By (3.2), f has a unique decomposition of the form

$$\begin{aligned} f=\sum _{\ell =0}^rA_+^{r-\ell }g_\ell \quad (g_\ell \in {\mathcal W}_\ell ). \end{aligned}$$
(A.2)

The vertex functions \(\{g_\ell \}_{\ell =0}^r\) are given iteratively by:

  1. (i)

    \(g_0=\dfrac{A_-^rf}{n(0,r)}\);

  2. (ii)

    \(g_\ell =\dfrac{A_-^{r-\ell }\big [f-\sum _{j=0}^{\ell -1}A_+^{r-j}g_j\big ]}{n(\ell , r-\ell )}\) \((1\le \ell \le r)\)

where the constants \(n(r,\ell )\) are defined in (3.7).

Proof

An application of \(A_-^r\) to both sides of (A.2) yields

$$\begin{aligned} A_-^rf=\sum _{j=0}^rA_-^jA_-^{r-j}A_+^{r-j}g_j=\sum _{j=0}^rn(j,r-j)A_-^jg_j=n(0,r)g_0 \end{aligned}$$

where we have applied Corollary 1 and the fact that \(A_-g_j=0\) for all j. Dividing both sides of this equation by n(0, r) gives definition (i) of \(g_0\). Similarly, applying \(A_-^{r-1}\) to both sides of (A.2) yields

$$\begin{aligned} A_-^{r-1}f&=A_-^{r-1}A_+^rg_0+\sum _{j=1}^rA_-^{r-1}A_+^{r-j}g_j\\&=A_-^{r-1}A_+^rg_0+A_-^{r-1}A_+^{r-1}g_1=A_-^{r-1}A_+^rg_0+n(1,r-1)g_1 \end{aligned}$$

so that \(g_1=\dfrac{A_-^{r-1}(f-A_+^rg_0)}{n(1,r-1)}\), thus verifying (ii) in the case \(\ell =1\). Now suppose that \(g_0,g_1,\ldots ,g_{\ell -1}\) have been determined. Applying \(A_-^{r-\ell }\) to both sides of (A.2) gives

$$\begin{aligned} A_-^{r-\ell }f&=A_-^{r-\ell }\big (\sum _{j=0}^{\ell -1}A_+^{r-j}g_j+A_+^{r-\ell }g_\ell +\sum _{j=\ell +1}^rA_+^{r-j}g_j\big )\\&=\sum _{j=0}^{\ell -1}A_-^{r-\ell }A_+^{r-j}g_j+A_-^{r-\ell }A_+^{r-\ell }g_\ell =\sum _{j=0}^{\ell -1}A_-^{r-\ell }A_+^{r-j}g_j+n(\ell ,r-\ell )g_\ell . \end{aligned}$$

Note that \(n(\ell ,r-\ell )\ne 0\) for \(\ell \le r<N/2\). Rearranging this equation gives (ii). This proves the result. \(\square \)

Remark

The projections must be computed iteratively starting with the innermost projections in order to ensure that components extracted at each step are orthogonal to components from smaller spheres.

1.2 Proof of Proposition 2

We restate Proposition 2 as follows.

Proposition 8

Let \(0\le r<s<N/2\). Let \(f_r=\sum _{\ell =0}^{N-2r} c_k A_+^k g_r\in {\mathcal {V}}_r\) and \( f_s=\sum _{\ell =0}^{N-2s} d_k A_+^k g_s\in {\mathcal {V}}_s\). Then \(f_r\) and \(f_s\) are orthogonal.

Proof

It suffices to show that the restrictions of \(f_r\) and \(f_s\) to any Hamming sphere \(\Sigma _\rho \) are orthogonal. This is automatically true if \(\rho <s\) or \(\rho >N-s\) since \(f_s=0\) on such spheres. If \(s\le \rho \le N-s\) then \(f_r|_{\Sigma _\rho } =c_{\rho -r} A_+^{\rho -r}g_r\) and \(f_s|_{\Sigma _\rho } =d_{\rho -s} A_+^{\rho -s}g_s\). Therefore

$$\begin{aligned}&\langle f_r,\, f_s\mathbb {1}_{\Sigma _\rho }\rangle =c_{\rho -r} d_{\rho -s} \langle A_+^{\rho -r}g_r , A_+^{\rho -s}g_s\rangle \\&\quad =c\langle A_-^{\rho -s}A_+^{\rho -r} g_r, g_s \rangle =c\, m(r,\rho -r-1)\cdots m(r,s-r) \langle A_+^{s-r} g_r,\, g_s\rangle =0 \end{aligned}$$

by virtue of (3.2). \(\square \)

1.3 Proof of Proposition 1

Lemma 5

If \(h\in \ell ^2(\Sigma _r)\setminus {\mathcal {W}}_r\), \(0<r<N/2\), then \(A_+A_- h\ne 0\).

Proof

Theorem 1 implies that \(A_+\) is injective on \(\ell ^2(\Sigma _{r-1})\) (\(1<r<N/2\)). Since \(A_-h\in \ell ^2(\Sigma _{r-1})\setminus \{0\}\), the lemma follows. \(\square \)

Proof of Proposition 1

Consider the involution \(\widetilde{g}(S)=g(\widetilde{S})\) where \(\widetilde{S}\) is the complement of S in \(\{1,\ldots N\}\). This involution is an isomorphism between \(\ell ^2(\Sigma _r)\) and \(\ell ^2(\Sigma _{N-r})\). In addition, \((A_-g)^{\sim }=A_+ \widetilde{g}\). To see this, if \({b'}\in S\) then \((A_+ \widetilde{g})(\widetilde{S}\cup {b'})=\sum _{b\in (\widetilde{S}\cup {b'})} \widetilde{g}((\widetilde{S}\cup {b'})\setminus b)= \sum _{b\notin (S\setminus {b'})}g((S\setminus {b'})\cup b)=(A_-g)(S\setminus {b'})=(A_-g)^{\sim }(\widetilde{S}\cup {b'})\).

By Theorem 1, if \(g\in {\mathcal {W}}_r\) then \(A_-A_+^{N-2r+1}g=0\). We claim that, in fact, \(A_+^{N-2r+1}g=0\). Set \(\widetilde{u}= A_+^{N-2r}g\). The claim then is that \(A_+\widetilde{u}=0\), that is, \(A_-u=0\), so \(u\in {\mathcal {W}}_r\). Suppose not. Since \(\widetilde{u}\in \ell ^2(\Sigma _{N-r})\) and \({u}\in \ell ^2(\Sigma _{r})\), u has a unique orthogonal decomposition \(u=u_1+h\) where \(u_1\in {\mathcal {W}}_r\) and \(h=A_+u_2\) for some nonzero \(u_2\in \ell ^2(\Sigma _{r-1})\). The condition \(A_-A_+^{N-2r+1}g=0\) becomes \(A_-A_+ \widetilde{h}=0\). Involuting gives \(A_+A_-h=0\) which contradicts Lemma 5. This contradiction proves Proposition 1. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hogan, J.A., Lakey, J.D. Spatio-Spectral Limiting on Boolean Cubes. J Fourier Anal Appl 27, 40 (2021). https://doi.org/10.1007/s00041-021-09845-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-021-09845-y

Keywords

Mathematics Subject Classification

Navigation