Skip to main content
Log in

A Kind of Generalized Integrable Couplings and Their Bi-Hamiltonian Structure

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We introduce a Lie algebra \(\widetilde {g}\) which can be used to construct integrable couplings of some spectral problems. As two examples, the non-semisimple Lie algebra \(\widetilde {g}\) is applied to enlarge the spectral problems of an extended Ablowitz-Kaup-Newell-Segur (AKNS) spectral problem and a generalized D-Kaup-Newell (D-KN) spectral problem. It follows that we obtain two generalized integrable couplings by solving these expanded zero-curvature equations. Finally, we find that the integrable hierarchies that we obtain have bi-Hamiltonian structures of combinatorial form, thereby showing their Liouville integrability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, H., Li, Y.X.: Two new nonlinear integrable hierarchies and their nonlinear integrable coupings. J. Appl. Math. Phys. 6, 1346–1362 (2018)

    Article  Google Scholar 

  2. Guan, X., Zhang, H.Q., Liu, W.J.: Nonlinear bi-integrable couplings of a generalized Kaup-Newell type soliton hierarchy. Optik 172, 1003–1011 (2018)

    Article  ADS  Google Scholar 

  3. Geng, X.G., Ma, W.X.: A generalized Kaup-Newell spectral problem, soliton equations and finite-dimensional integrable systems. Il Nuovo Cimento A 108, 477–486 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ma, W.X., Zhou, Y.: Reduced D-Kaup-Newell soliton hierarchies from sl(2R) and so(3, R). Int. J. Geom. Meth. Mod. Phys. 13, 1650105 (2016)

    Article  Google Scholar 

  5. Zhang, Y.F., Tam, H.: A few integrable systems and spatial spectral transformations. Commun. Nonlinear Sci. 14(11), 3770–3783 (2009)

    Article  MathSciNet  Google Scholar 

  6. Zhang, Y.F., Rui, W.J.: A few continuous and discrete dynamical systems. Rep. Math. Phys. 78(1), 19–32 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zhang, Y.F., Tam, H.: Applications of the Lie algebra gl(2). Mod. Phys. Lett. B 23(14), 1763–1770 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zhang, Y.F., Zhang, H.Q., Yan, Q.Y.: Integrable couplings of Botie-Pempinelli-Tu (BPT) hierarchy. Phys. Lett. A 299(5-6), 543–548 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ma, W.X., Fuchssteiner, B.: Integrable theory of the perturbation equations. Chaos, Soliton Fract. 7, 1227–1250 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  10. Fan, E.G., Zhang, Y.F.: A simple method for generating integrable hierarchies with multi-potential functions. Chaos, Soliton Fract. 25(2), 425–439 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ma, W.X.: Integrable couplings of soliton equations by perturbations I: a general theory and application to the KdV hierarchy. Methods Appl. Anal. 7, 21–55 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Guo, F.K., Zhang, Y.F.: A new loop algebra and a corresponding integrable hierarchy, as well as its integrable coupling. J. Math. Phys. 44, 5793–5803 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. Zhang, Y.F.: A generalized multi-component Glachette-Johnson(GJ) hierarchy and its integrable coupling system. Chaos, Soliton Fract. 21, 305–310 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  14. Ma, W.X., Xu, X.X., Zhang, Y.F.: Semi-direct sums of Lie algebras and discrete integrable couplings. J. Math. Phys. 47, 053501 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  15. Ma, W.X., Chen, M.: Hamiltonian and quasi-Hamiltonian structures associated with semidirect sums of Lie algebras. J. Phys. A: Math. Gen. 39, 10787–10801 (2006)

    Article  ADS  Google Scholar 

  16. Shen, S.F., Li, C.X., Jin, Y.Y., Ma, W.X.: Completion of the Ablowitz-Kaup-Newell-Segur integrable coupling. J. Math. Phys. 59, 103503 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  17. Mcanally, M., Ma, W.X.: Two integrable couplings of a generalized D-Kaup-Newell hierarchy and their Hamiltonian and bi-Hamiltonian structures. Nonlinear Anal-Theor. 191, 111629 (2020)

    Article  MathSciNet  Google Scholar 

  18. Yu, F.J., Zhang, H.Q.: Hamiltonian structures of the integrable couplings for the multicomponent Dirac hierarchy. Appl. Math. Comput. 197, 828–835 (2008)

    Article  MathSciNet  Google Scholar 

  19. Zhang, Y.J., Ma, W.X., Unsal, O.: A novel kind of AKNS integrable couplings and their Hamiltonain structures. Turk. J. Math. 41(6), 1467–1476 (2016)

    MATH  Google Scholar 

  20. Ma, W.X.: Integrable couplings and matrix loop algebras. Nonlinear and Modern Mathematical Physics. In: Ma, W.-X., Kaup, D. (eds.) AIP Conference Proceedings, vol. 1562, pp 105–122. American Institute of Physics, Melville (2013)

  21. Tu, G.Z.: The trace identity, a powerful tool for constructing the Hamiltonian structure of integrable systems. J. Math. Phys. 30, 330–338 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zhang, Y.F., Tam, H.W.: Discussion on integrable properties for higher-dimensional variable-coefficient nonlinear partial differential equations. J. Math. Phys. 54, 013516 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  23. Zhang, Y.F., Fan, E.G., Tam, H.W.: A few expanding Lie algebras of the Lie algebra A1 and applications. Phys. Lett. A 359, 471–480 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  24. Zhang, Y.F., Liu, J.: Induced Lie algebras of a six-dimensional matrix Lie algebra. Commun. Theor. Phys. 50(2), 289 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  25. Qiao, Z.J.: New hierarchies of isospectral and non-isospectral integrable NLEEs derived from the Harry-Dym spectral problem. Physica A 252, 377–387 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  26. Li, Y.S., Zhu, G.C.: New set of symmetries of the integrable equations, Lie algebras and non-isospectral evolution equations: II. AKNS suystem. J. Phys. A: Math. Gen. 19, 3713–3725 (1986)

    Article  ADS  Google Scholar 

  27. Xu, X.X.: An integrable coupling hierarchy of the Mkdvintegrable systems, its Hamiltonian structure and corresponding nonisospectral integrable hierarchy. Appl. Math. Comput. 216(1), 344–353 (2010)

    Article  MathSciNet  Google Scholar 

  28. Ma, W.X., Zhang, Y.: Component-trace identities for Hamiltonian structures. Appl. Anal. 89(4), 457–472 (2010)

    Article  MathSciNet  Google Scholar 

  29. Wang, H.F., Li, C.Z.: Affine Weyl group symmetries of Frobenius Painlevé equations. Math. Meth. Appl. Sci. 43, 3238–3252 (2020)

    Article  Google Scholar 

  30. Wang, H.F., Zhang, Y.F.: Residual Symmetries and Bäcklund Transformations of Strongly Coupled Boussinesq-Burgers System. Symmetry 11, 1365 (2019)

    Article  Google Scholar 

  31. Zhang, Y.F., Mei, J.Q., Guan, H.Y.: A method for generating isospectral and nonisospectral hierarchies of equations as well as symmetries. J. Geom. Phys. 147, 103538:1–15 (2020)

    Article  MathSciNet  Google Scholar 

  32. Wang, H.F., Zhang, Y.F.: Two nonisospectral integrable hierarchies and its integrable coupling. Int. J. Theor. Phys. 59, 2529–2539 (2020)

    Article  MathSciNet  Google Scholar 

  33. Strachan, I.A.B., Zuo, D.F.: Integrability of the Frobenius algebra-valued Kadomtsev-Petviashvili hierarchy. J. Math. Phys. 56, 113509 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  34. Zuo, D.F.: The Frobenius-Virasoro algebra and Euler equations. J. Geom. Phys. 86, 203–210 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  35. Li, C.Z., He, J.S.: The extended \(\mathcal {Z}_{n}\)-toda hierarchy. Theor. Math. Phys. 185, 1614–1635 (2015)

    Article  Google Scholar 

  36. Li, C.Z.: Gauge transformation and symmetries of the commutative multi-component BKP hierarchy. J. Phys. A: Math. Theor. 49, 015203 (2016)

    Article  ADS  Google Scholar 

  37. Li, C.Z.: Multicomponent Fractional Volterra Hierarchy and its subhierarchy with Virasoro symmetry. To appear in Theor. Math. Phys. (2021)

  38. Li, C.Z.: Finite dimensional tau functions of universal character hierarchy. Theor. Math. Phys. 206(3), 321–334 (2021)

    MathSciNet  Google Scholar 

  39. Wang, H.F., Li, C.Z.: Bäcklund transformation of Frobenius Painlevé equations. Mod. Phys. Lett. B 32, 1850181 (2018)

    Article  ADS  Google Scholar 

  40. Yang, J.Y., Ma, W.X., Khalique, C.M.: Determining lump solutions for a combined soliton equation in (2 + 1)-dimensions. Eur. Phys. J. Plus 135 (6), 494 (2020)

    Article  Google Scholar 

  41. Ma, W.X., Zhang, Y., Tang, Y.N.: Symbolic computation of lump solutions to a combined equation involving three types of nonlinear terms. East Asian J. Appl. Math. 10(4), 732–745 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant No.11971475).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yufeng Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A

$$ \begin{array}{ll} &{}{\Psi}_{11}{=}\frac{1}{2}\partial{-}p{-}q\partial^{{-}1}r{-}2\eta q\partial^{{-}1}pu_{2}+\eta q\partial^{{-}1}u_{2}\partial{-}2\eta^{2}q\partial^{{-}1}(u_{1}r+u_{2}q)u_{2}+[{-}\eta\partial q+2\eta pq{-}\varepsilon u_{1}{-}2\eta^{2}q(u_{1}r+u_{2}q)]\partial^{{-}1}u_{2},\\ &{}{\Psi}_{12}{=-}q\partial^{-1}q-2\eta q\partial^{-1}pu_{1}-\eta q\partial^{-1}u_{1}\partial-2\eta^{2}q\partial^{-1}(u_{1}r+u_{2}q)u_{1}+[-\eta\partial q+2\eta pq-\varepsilon u_{1}-2\eta^{2}q(u_{1}r+u_{2}q)]\partial^{-1}u_{1},\\ &{}{\Psi}_{13}{=-}\varepsilon q\partial^{-1}u_{2}-2\eta q\partial^{-1}pr+\eta q\partial^{-1}r\partial-2\eta^{2}q\partial^{-1}(u_{1}r+u_{2}q)r+[-\eta\partial q+2\eta pq-\varepsilon u_{1}-2\eta^{2}q(u_{1}r+u_{2}q)]\partial^{-1}r,\\ &{}{\Psi}_{14}{=-}\varepsilon q\partial^{-1}u_{1}-2\eta q\partial^{-1}pq-\eta q\partial^{-1}q\partial-2\eta^{2}q\partial^{-1}(u_{1}r+u_{2}q)q+[-\eta\partial q+2\eta pq-\varepsilon u_{1}-2\eta^{2}q(u_{1}r+u_{2}q)]\partial^{-1}q, \end{array} $$
$$ \begin{array}{ll} &{}{\Psi}_{21}{=}r\partial^{-1}r+2\eta r\partial^{-1}pu_{2}-\eta r\partial^{-1}u_{2}\partial+2\eta^{2}r\partial^{-1}(u_{1}r+u_{2}q)u_{2}+[-\eta\partial r-2\eta pr+\varepsilon u_{2}+2\eta^{2}r(u_{1}r+u_{2}q)]\partial^{-1}u_{2},\\ &{}{\Psi}_{22}{=-}\frac{1}{2}\partial-p+r\partial^{-1}q+2\eta r\partial^{-1}pu_{1}+\eta r\partial^{-1}u_{1}\partial{+}2\eta^{2}r\partial^{-1}(u_{1}r{+}u_{2}q)u_{1}{+}[{-}\eta\partial r{-}2\eta pr{+}\varepsilon u_{2}{+}2\eta^{2}r(u_{1}r{+}u_{2}q)]\partial^{-1}u_{1},\\ &{}{\Psi}_{23}{=}\varepsilon r\partial^{-1}u_{2}+2\eta r\partial^{-1}pr-\eta r\partial^{-1}r\partial+2\eta^{2}r\partial^{-1}(u_{1}r+u_{2}q)r+[-\eta\partial r-2\eta pr+\varepsilon u_{2}+2\eta^{2}r(u_{1}r+u_{2}q)]\partial^{-1}r,\\ &{}{\Psi}_{24}{=}\varepsilon r\partial^{-1}u_{1}+2\eta r\partial^{-1}pq+\eta r\partial^{-1}q\partial+2\eta^{2}r\partial^{-1}(u_{1}r+u_{2}q)q+[-\eta\partial r-2\eta pr+\varepsilon u_{2}+2\eta^{2}r(u_{1}r+u_{2}q)]\partial^{-1}q, \end{array} $$
$$ \begin{array}{ll} &{}{\Psi}_{31}{=}{-}u_{1}\partial^{{-}1}r{-}2\eta u_{1}\partial^{{-}1}pu_{2}+\eta u_{1}\partial^{{-}1}u_{2}\partial{-}2\eta^{2}u_{1}\partial^{{-}1}(u_{1}r+u_{2}q)u_{2}+[{-}\eta\partial u_{1}+2\eta pu_{1}{-}q{-}2\eta^{2}u_{1}(u_{1}r+u_{2}q)]\partial^{{-}1}u_{2},\\ &{}{\Psi}_{32}{=}{-}u_{1}\partial^{{-}1}q{-}2\eta u_{1}\partial^{{-}1}pu_{1}{-}\eta u_{1}\partial^{{-}1}u_{1}\partial{-}2\eta^{2}u_{1}\partial^{{-}1}(u_{1}r+u_{2}q)u_{1}+[{-}\eta\partial u_{1}+2\eta pu_{1}{-}q{-}2\eta^{2}u_{1}(u_{1}r+u_{2}q)]\partial^{{-}1}u_{1},\\ &{}{\Psi}_{33}{=}\frac{1}{2}\partial{-}p{-}\varepsilon u_{1}\partial^{{-}1}u_{2}{-}2\eta u_{1}\partial^{{-}1}pr{+}\eta u_{1}\partial^{{-}1}r\partial{{-}}2\eta^{2}u_{1}\partial^{{-}1}(u_{1}r+u_{2}q)r+[{-}\eta\partial u_{1}{+}2\eta pu_{1}{-}q{-}2\eta^{2}u_{1}(u_{1}r+u_{2}q)]\partial^{{-}1}r,\\ &{}{\Psi}_{34}{=}{-}\varepsilon u_{1}\partial^{{-}1}u_{1}{-}2\eta u_{1}\partial^{{-}1}pq{-}\eta u_{1}\partial^{{-}1}q\partial{-}2\eta^{2}u_{1}\partial^{{-}1}(u_{1}r+u_{2}q)q+[{-}\eta\partial u_{1}+2\eta pu_{1}{-}q{-}2\eta^{2}u_{1}(u_{1}r+u_{2}q)]\partial^{{-}1}q, \end{array} $$
$$ \begin{array}{ll} &{}{\Psi}_{41}{=}u_{2}\partial^{-1}r{+}2\eta r\partial^{-1}pu_{2}-\eta u_{2}\partial^{-1}u_{2}\partial{+}2\eta^{2}u_{2}\partial^{-1}(u_{1}r{+}u_{2}q)q{+}[-\eta\partial u_{2}-2\eta pu_{2}{+}r{+}2\eta^{2}u_{2}(u_{1}r{+}u_{2}q)]\partial^{-1}u_{2},\\ &{}{\Psi}_{42}{=}u_{2}\partial^{-1}q{+}2\eta r\partial^{-1}pu_{1}{+}\eta u_{2}\partial^{-1}u_{1}\partial{+}2\eta^{2}u_{2}\partial^{-1}(u_{1}r{+}u_{2}q)u_{1}{+}[-\eta\partial u_{2}-2\eta pu_{2}{+}r{+}2\eta^{2}u_{2}(u_{1}r{+}u_{2}q)]\partial^{-1}u_{1},\\ &{}{\Psi}_{43}{=}\varepsilon u_{2}\partial^{-1}u_{2}{+}2\eta r\partial^{-1}pr-\eta u_{2}\partial^{-1}r\partial{+}2\eta^{2}u_{2}\partial^{-1}(u_{1}r{+}u_{2}q)r{+}[-\eta\partial u_{2}-2\eta pu_{2}{+}r{+}2\eta^{2}u_{2}(u_{1}r{+}u_{2}q)]\partial^{-1}r,\\ &{}{\Psi}_{44}{=-}\frac{1}{2}\partial{-}p{+}\varepsilon u_{2}\partial^{-1}u_{1}{{+}}2\eta r\partial^{-1}pq{{+}}\eta u_{2}\partial^{-1}q\partial{+}2\eta^{2}u_{2}\partial^{-1}(u_{1}r{+}u_{2}q)q{+}[-\eta\partial u_{2}-2\eta pu_{2}{+}r{+}2\eta^{2}u_{2}(u_{1}r{+}u_{2}q)]\partial^{-1}q. \end{array} $$

We show the specific calculation of the first row of operator Ψ as follows:

$$ \begin{array}{ll} &2b_{m+1}-4\eta qe_{m+1}\\ =&b_{m,x}+2a_{m}q+2\varepsilon e_{m}u_{1}-2b_{m}p-4\eta q\partial^{-1}(u_{1}c_{m+1}-u_{2}b_{m+1}+qg_{m+1}-rf_{m+1})\\ =&b_{m,x}+2q\partial^{-1}(qc_{m}-rb_{m}+\varepsilon u_{1}g_{m}-\varepsilon u_{2}f_{m})+2\varepsilon u_{1}\partial^{-1}(u_{1}c_{m}-u_{2}b_{m}+qg_{m}-rf_{m})-2b_{m}p\\ &-4\eta q\partial^{-1}u_{1}(-\frac{1}{2}c_{m,x}+a_{m}r+\varepsilon e_{m}u_{2}-c_{m}p)+4\eta q\partial^{-1}u_{2}(\frac{1}{2}b_{m,x}+a_{m}q+\varepsilon e_{m}u_{1}-b_{m}p)\\ &-4\eta q\partial^{-1}q(-\frac{1}{2}g_{m,x}+a_{m}u_{2}+e_{m}r-g_{m}p)+4\eta q\partial^{-1}r(\frac{1}{2}f_{m,x}+a_{m}u_{1}+e_{m}q-f_{m}p)\\ =&b_{m,x}-2b_{m}p+2q\partial^{-1}qc_{m}-2q\partial^{-1}rb_{m}+2\varepsilon q\partial^{-1}u_{1}g_{m}-2\varepsilon q\partial^{-1}u_{2}f_{m} +2\varepsilon u_{1}\partial^{-1}u_{1}c_{m}-2\varepsilon u_{1}\partial^{-1}u_{2}b_{m}+2\varepsilon u_{1}\partial^{-1}qg_{m}\\ &-2\varepsilon u_{1}\partial^{-1}rf_{m}-4\eta q\partial^{-1}p(u_{2}b_{m}-u_{1}c_{m}+rf_{m}-qg_{m})+2\eta q\partial^{-1}(u_{2}b_{m,x}+u_{1}c_{m,x}+rf_{m,x}+qg_{m,x})\\ =&\frac{1}{2}\partial(2b_{m}-4\eta qe_{m})-p(2b_{m}-4\eta qe_{m})-q\partial^{-1}q(-2c_{m}+4\eta re_{m})-q\partial^{-1}r(2b_{m}-4\eta qe_{m})- \varepsilon q\partial^{-1}u_{1}(-2g_{m}+4\eta u_{2}e_{m})\\ &-\varepsilon q\partial^{-1}u_{2}(2f_{m}-4\eta u_{1}e_{m})\\ =&-\varepsilon u_{1}\partial^{-1}u_{1}(-2c_{m}+4\eta re_{m})-\varepsilon u_{1}\partial^{-1}u_{2}(2b_{m}-4\eta qe_{m})-\varepsilon u_{1}\partial^{-1}q(-2g_{m}+4\eta u_{2}e_{m})-\varepsilon u_{1}\partial^{-1}r(2f_{m}-4\eta u_{1}e_{m})\\ &-2\eta q\partial^{-1}pu_{2}(2b_{m}-4\eta qe_{m})-2\eta q\partial^{-1}pu_{1}(-2c_{m}+4\eta re_{m})-2\eta q\partial^{-1}pq(-2g_{m}+4\eta u_{2}e_{m})\\ &-2\eta q\partial^{-1}pr(2f_{m}-4\eta u_{1}e_{m})-\eta q\partial^{-1}u_{1}\partial(-2c_{m}+4\eta re_{m})+\eta q\partial^{-1}u_{2}\partial(2b_{m}-4\eta qe_{m})-\eta q\partial^{-1}q\partial(-2g_{m}+4\eta u_{2}e_{m})\\ &+\eta q\partial^{-1}r\partial(2f_{m}-4\eta u_{1}e_{m})+2\eta\partial qe_{m}-4\eta pqe_{m}+4\eta^{2}q\partial^{-1}(u_{1}\partial r+u_{2}\partial q+q\partial u_{2}+r\partial u_{1})e_{m}\\ {=}&\{\frac{1}{2}\partial{-}p{-}q\partial^{-1}r{-}2\eta q\partial^{-1}pu_{2}{+}\eta q\partial^{-1}u_{2}\partial-2\eta^{2}q\partial^{-1}(u_{1}r{+}u_{2}q)u_{2}+[-\eta\partial q+2\eta pq-\varepsilon u_{1}-2\eta^{2}q(u_{1}r+u_{2}q)]\partial^{-1}u_{2}\}(2b_{m}-4\eta qe_{m})\\ &+\{-q\partial^{-1}q-2\eta q\partial^{-1}pu_{1}-\eta q\partial^{-1}u_{1}\partial-2\eta^{2}q\partial^{-1}(u_{1}r+u_{2}q)u_{1}+[-\eta\partial q+2\eta pq-\varepsilon u_{1}-2\eta^{2}q(u_{1}r+u_{2}q)]\partial^{-1}u_{1}\}(-2c_{m}+4\eta re_{m})\\ &+\{-\varepsilon q\partial^{-1}u_{2}-2\eta q\partial^{-1}pr+\eta q\partial^{-1}r\partial-2\eta^{2}q\partial^{-1}(u_{1}r+u_{2}q)r+[-\eta\partial q+2\eta pq-\varepsilon u_{1}-2\eta^{2}q(u_{1}r+u_{2}q)]\partial^{-1}r\}(2f_{m}-4\eta u_{1}e_{m})\\ &+\{-\varepsilon q\partial^{-1}u_{1}-2\eta q\partial^{-1}pq-\eta q\partial^{-1}q\partial-2\eta^{2}q\partial^{-1}(u_{1}r+u_{2}q)q+[-\eta\partial q+2\eta pq-\varepsilon u_{1}-2\eta^{2}q(u_{1}r+u_{2}q)]\partial^{-1}q\}(-2g_{m}+4\eta u_{2}e_{m})\\ =&{\Psi}_{11}(2b_{m}-4\eta qe_{m})+{\Psi}_{12}(-2c_{m}+4\eta re_{m})+{\Psi}_{13}(2f_{m}-4\eta u_{1}e_{m})+{\Psi}_{14}(-2g_{m}+4\eta u_{2}e_{m}). \end{array} $$

Similarly, we can also get the Ψij(2 ≤ i ≤ 4, 1 ≤ j ≤ 4).

Appendix: B

$$ \begin{array}{ll} &{\Phi}_{11}={\Phi}_{12}={\Phi}_{13}={\Phi}_{18}={\Phi}_{19}={\Phi}_{110}=0,\ {\Phi}_{14}=\frac{r}{2},\ {\Phi}_{15}=\frac{q}{2},\ {\Phi}_{16}=\frac{\varepsilon u_{7}}{2},\ {\Phi}_{17}=\frac{\varepsilon u_{6}}{2},\\ &{\Phi}_{21}={\Phi}_{28}=0,\ {\Phi}_{22}=-q\partial^{-1}v-\varepsilon u_{6}\partial^{-1}u_{4},\ {\Phi}_{23}=-q\partial^{-1}s-\varepsilon u_{6}\partial^{-1}u_{3},\ {\Phi}_{24}=1-q\partial^{-1}r-\varepsilon u_{6}\partial^{-1}u_{7}, \\ &{\Phi}_{25}=-q\partial^{-1}q-\varepsilon u_{6}\partial^{-1}u_{6}, \ {\Phi}_{26}=-q\partial^{-1}(\varepsilon u_{3})-\varepsilon u_{6}\partial^{-1}r,\ {\Phi}_{27}=-q\partial^{-1}(\varepsilon u_{6})-\varepsilon u_{6}\partial^{-1}q, \\ &{\Phi}_{29}=-q\partial^{-1}(\varepsilon u_{4})-\varepsilon u_{6}\partial^{-1}v,\ {\Phi}_{210}=-q\partial^{-1}(\varepsilon u_{3})-\varepsilon u_{6}\partial^{-1}s,\\ &{\Phi}_{31}={\Phi}_{38}=0,\ {\Phi}_{32}=r\partial^{-1}v+\varepsilon u_{7}\partial^{-1}u_{7},\ {\Phi}_{33}=r\partial^{-1}s+\varepsilon u_{7}\partial^{-1}u_{3},\ {\Phi}_{34}=r\partial^{-1}r+\varepsilon u_{7}\partial^{-1}u_{7}, \\ &{\Phi}_{35}=1+r\partial^{-1}q+\varepsilon u_{7}\partial^{-1}u_{6}, \ {\Phi}_{36}=r\partial^{-1}(\varepsilon u_{7})+\varepsilon u_{7}\partial^{-1}r,\ {\Phi}_{37}=r\partial^{-1}(\varepsilon u_{6})+\varepsilon u_{7}\partial^{-1}q, \\ &{\Phi}_{39}=r\partial^{-1}(\varepsilon u_{4})+\varepsilon u_{7}\partial^{-1}v,\ {\Phi}_{310}=r\partial^{-1}(\varepsilon u_{3})+\varepsilon u_{7}\partial^{-1}s,\\ &{\Phi}_{41}={\Phi}_{48}=0,\ {\Phi}_{42}=\frac{\partial}{2}+p-s\partial^{-1}v-\varepsilon u_{3}\partial^{-1}u_{4},\ {\Phi}_{43}=-s\partial^{-1}s-\varepsilon u_{3}\partial^{-1}u_{3},\ {\Phi}_{44}=-s\partial^{-1}r-\varepsilon u_{3}\partial^{-1}u_{7}, \\ &{\Phi}_{45}=-s\partial^{-1}q-\varepsilon u_{3}\partial^{-1}u_{6}, \ {\Phi}_{46}=-s\partial^{-1}(\varepsilon u_{7})-\varepsilon u_{3}\partial^{-1}r,\ {\Phi}_{47}=-s\partial^{-1}(\varepsilon u_{6})-\varepsilon u_{3}\partial^{-1}q, \\ &{\Phi}_{49}=-\varepsilon u_{5}-s\partial^{-1}(\varepsilon u_{4})-\varepsilon u_{3}\partial^{-1}v,\ {\Phi}_{410}=-s\partial^{-1}(\varepsilon u_{3})-\varepsilon u_{3}\partial^{-1}s,\\ &{\Phi}_{51}={\Phi}_{58}=0,\ {\Phi}_{52}=v\partial^{-1}v+\varepsilon u_{4}\partial^{-1}u_{4},\ {\Phi}_{53}=-\frac{\partial}{2}+p+v\partial^{-1}s+\varepsilon u_{4}\partial^{-1}u_{3},\ {\Phi}_{54}=v\partial^{-1}r+\varepsilon u_{4}\partial^{-1}u_{7}, \\ &{\Phi}_{55}=v\partial^{-1}q+\varepsilon u_{4}\partial^{-1}u_{6}, \ {\Phi}_{56}=v\partial^{-1}(\varepsilon u_{7})+\varepsilon u_{4}\partial^{-1}r,\ {\Phi}_{57}=v\partial^{-1}(\varepsilon u_{6})+\varepsilon u_{4}\partial^{-1}q, \\ &{\Phi}_{59}=v\partial^{-1}(\varepsilon u_{4})+\varepsilon u_{4}\partial^{-1}v,\ {\Phi}_{510}=-\varepsilon u_{5}+v\partial^{-1}(\varepsilon u_{3})+\varepsilon u_{4}\partial^{-1}s,\\ &{\Phi}_{61}={\Phi}_{68}=0,\ {\Phi}_{62}=-u_{5}-s\partial^{-1}u_{4}-u_{3}\partial^{-1}u_{4},\ {\Phi}_{63}=-u_{3}\partial^{-1}s-s\partial^{-1}u_{3},\ {\Phi}_{64}=-u_{3}\partial^{-1}r- s\partial^{-1}u_{7}, \\ &{\Phi}_{65}=-u_{3}\partial^{-1}q-s\partial^{-1}u_{6}, \ {\Phi}_{66}=-u_{3}\partial^{-1}(\varepsilon u_{7})-s\partial^{-1}r,\ {\Phi}_{67}=-u_{3}\partial^{-1}(\varepsilon u_{6})-s\partial^{-1}q, \\ &{\Phi}_{69}=\frac{\partial}{2}+p-u_{3}\partial^{-1}(\varepsilon u_{4})-s\partial^{-1}v,\ {\Phi}_{610}=-u_{5}\partial^{-1}(\varepsilon u_{3})-s\partial^{-1}s,\\ &{\Phi}_{71}={\Phi}_{78}=0,\ {\Phi}_{72}=u_{4}\partial^{-1}v+v\partial^{-1}u_{4},\ {\Phi}_{73}=-u_{5}+u_{4}\partial^{-1}s+v\partial^{-1}u_{3},\ {\Phi}_{74}=u_{4}\partial^{-1}r+v\partial^{-1}u_{7}, \\ &{\Phi}_{75}=u_{4}\partial^{-1}q+v\partial^{-1}u_{6}, \ {\Phi}_{76}=u_{4}\partial^{-1}(\varepsilon u_{7})+v\partial^{-1}r,\ {\Phi}_{77}=u_{4}\partial^{-1}(\varepsilon u_{6})+v\partial^{-1}q, \\ &{\Phi}_{79}=u_{4}\partial^{-1}(\varepsilon u_{4})+v\partial^{-1}v,\ {\Phi}_{710}=-\frac{\partial}{2}+p+u_{4}\partial^{-1}(\varepsilon u_{3})+v\partial^{-1}s,\\ &{\Phi}_{81}={\Phi}_{82}={\Phi}_{83}={\Phi}_{88}={\Phi}_{89}={\Phi}_{810}=0,\ {\Phi}_{84}=\frac{u_{7}}{2},\ {\Phi}_{85}=\frac{u_{6}}{2},\ {\Phi}_{86}=-\frac{r}{2},\ {\Phi}_{87}=-\frac{\varepsilon q}{2},\\ &{\Phi}_{91}={\Phi}_{98}=0,\ {\Phi}_{92}=-u_{6}\partial^{-1}v-q\partial^{-1}u_{4},\ {\Phi}_{93}=-u_{6}\partial^{-1}s-q\partial^{-1}u_{3},\ {\Phi}_{94}=-u_{6}\partial^{-1}r-q\partial^{-1}u_{7}, \\ &{\Phi}_{95}=-u_{6}\partial^{-1}q-q\partial^{-1}u_{6}, \ {\Phi}_{96}=1-u_{6}\partial^{-1}(\varepsilon u_{7})-q\partial^{-1}r,\ {\Phi}_{97}=-u_{6}\partial^{-1}(\varepsilon u_{6})-q\partial^{-1}q, \\ &{\Phi}_{99}=-u_{6}\partial^{-1}(\varepsilon u_{4})-q\partial^{-1}v,\ {\Phi}_{910}=-u_{6}\partial^{-1}(\varepsilon u_{3})-q\partial^{-1}s,\\ &{\Phi}_{101}={\Phi}_{108}=0,\ {\Phi}_{102}=u_{7}\partial^{-1}v+r\partial^{-1}u_{4},\ {\Phi}_{103}=u_{7}\partial^{-1}s+r\partial^{-1}u_{3},\ {\Phi}_{104}=u_{7}\partial^{-1}r+r\partial^{-1}u_{7}, \\ &{\Phi}_{105}=u_{7}\partial^{-1}q+r\partial^{-1}u_{6}, \ {\Phi}_{106}=u_{7}\partial^{-1}(\varepsilon u_{7})+r\partial^{-1}r,\ {\Phi}_{107}=1+u_{7}\partial^{-1}(\varepsilon u_{6})+r\partial^{-1}q, \\ &{\Phi}_{109}=u_{7}\partial^{-1}(\varepsilon u_{4})+r\partial^{-1}v,\ {\Phi}_{1010}=u_{7}\partial^{-1}(\varepsilon u_{3})+r\partial^{-1}s. \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Zhang, Y. A Kind of Generalized Integrable Couplings and Their Bi-Hamiltonian Structure. Int J Theor Phys 60, 1797–1812 (2021). https://doi.org/10.1007/s10773-021-04799-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04799-9

Keywords

Navigation