1932

Abstract

Quantum chemistry in the form of density functional theory (DFT) calculations is a powerful numerical experiment for predicting intermolecular interaction energies. However, no chemical insight is gained in this way beyond predictions of observables. Energy decomposition analysis (EDA) can quantitatively bridge this gap by providing values for the chemical drivers of the interactions, such as permanent electrostatics, Pauli repulsion, dispersion, and charge transfer. These energetic contributions are identified by performing DFT calculations with constraints that disable components of the interaction. This review describes the second-generation version of the absolutely localized molecular orbital EDA (ALMO-EDA-II). The effects of different physical contributions on changes in observables such as structure and vibrational frequencies upon complex formation are characterized via the adiabatic EDA. Example applications include red- versus blue-shifting hydrogen bonds; the bonding and frequency shifts of CO, N, and BF bound to a [Ru(II)(NH)]2 + moiety; and the nature of the strongly bound complexes between pyridine and the benzene and naphthalene radical cations. Additionally, the use of ALMO-EDA-II to benchmark and guide the development of advanced force fields for molecular simulation is illustrated with the recent, very promising, MB-UCB potential.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-115149
2021-04-20
2024-05-06
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090419-115149.html?itemId=/content/journals/10.1146/annurev-physchem-090419-115149&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Mardirossian N, Head-Gordon M. 2017. Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals. Mol. Phys. 115:2315–72
    [Google Scholar]
  2. 2. 
    Goerigk L, Hansen A, Bauer CA, Ehrlich S, Najibi A, Grimme S. 2017. A look at the density functional theory zoo with the advanced GMTKN55 database for general main group thermochemistry, kinetics and noncovalent interactions. Phys. Chem. Chem. Phys. 19:32184–215
    [Google Scholar]
  3. 3. 
    Grimme S, Antony J, Ehrlich S, Krieg H 2010. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132:154104
    [Google Scholar]
  4. 4. 
    Vydrov OA, Van Voorhis T. 2010. Nonlocal van der Waals density functional: The simpler the better. J. Chem. Phys. 133:244103
    [Google Scholar]
  5. 5. 
    Murray JS, Riley KE, Politzer P, Clark T 2010. Directional weak intermolecular interactions: σ-hole bonding. Aust. J. Chem. 63:1598–607
    [Google Scholar]
  6. 6. 
    Murray JS, Politzer P. 2017. Molecular electrostatic potentials and noncovalent interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 7:e1326
    [Google Scholar]
  7. 7. 
    Weinhold F, Klein RA. 2012. What is a hydrogen bond? Mutually consistent theoretical and experimental criteria for characterizing H-bonding interactions. Mol. Phys. 110:565–79
    [Google Scholar]
  8. 8. 
    Weinhold F, Klein RA. 2014. What is a hydrogen bond? Resonance covalency in the supramolecular domain. Chem. Educ. Res. Pract. 15:276–85
    [Google Scholar]
  9. 9. 
    Stone AJ. 2013. The Theory of Intermolecular Forces Oxford, UK: Oxford Univ. Press. , 2nd ed..
  10. 10. 
    Horn PR, Mao Y, Head-Gordon M. 2016. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 18:23067–79
    [Google Scholar]
  11. 11. 
    Andrés J, Ayers PW, Boto RA, Carbó-Dorca R, Chermette H et al. 2019. Nine questions on energy decomposition analysis. J. Comput. Chem. 40:2248–83
    [Google Scholar]
  12. 12. 
    Mao Y, Horn PR, Head-Gordon M. 2017. Energy decomposition analysis in an adiabatic picture. Phys. Chem. Chem. Phys. 19:5944–58
    [Google Scholar]
  13. 13. 
    Mao Y, Levine DS, Loipersberger M, Horn PR, Head-Gordon M. 2020. Probing radical–molecule interactions with a second generation energy decomposition analysis of DFT calculations using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 22:12867–85
    [Google Scholar]
  14. 14. 
    Phipps MJS, Fox T, Tautermann CS, Skylaris CK. 2015. Energy decomposition analysis approaches and their evaluation on prototypical protein–drug interaction patterns. Chem. Soc. Rev. 44:3177–211
    [Google Scholar]
  15. 15. 
    Pastorczak E, Corminboeuf C. 2017. Found in translation: quantum chemical tools for grasping non-covalent interactions. J. Chem. Phys. 146:120901
    [Google Scholar]
  16. 16. 
    Zhao L, von Hopffgarten M, Andrada DM, Frenking G. 2018. Energy decomposition analysis. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8:e1345
    [Google Scholar]
  17. 17. 
    Mo Y, Bao P, Gao J 2011. Energy decomposition analysis based on a block-localized wavefunction and multistate density functional theory. Phys. Chem. Chem. Phys. 13:6760–75
    [Google Scholar]
  18. 18. 
    Kitaura K, Morokuma K. 1976. A new energy decomposition scheme for molecular interactions within the Hartree–Fock approximation. Int. J. Quantum Chem. 10:325–40
    [Google Scholar]
  19. 19. 
    Morokuma K. 1977. Why do molecules interact? The origin of electron donor-acceptor complexes, hydrogen bonding and proton affinity. Acc. Chem. Res. 10:294–300
    [Google Scholar]
  20. 20. 
    Ziegler T, Rauk A. 1977. On the calculation of bonding energies by the Hartree Fock Slater method. Theor. Chem. Acc. 46:1–10
    [Google Scholar]
  21. 21. 
    Ziegler T, Rauk A. 1979. A theoretical study of the ethylene-metal bond in complexes between Cu+, Ag+, Pt0, or Pt2+ and ethylene, based on Hartree-Fock-Slater transition-state method. Inorg. Chem. 18:1558–65
    [Google Scholar]
  22. 22. 
    Bickelhaupt FM, Baerends EJ 2007. Kohn-Sham density functional theory: predicting and understanding chemistry. Reviews in Computational Chemistry, Vol. 15 KB Lipkowitz, DB Boyd 1–86 New York: Wiley
    [Google Scholar]
  23. 23. 
    Mitoraj MP, Michalak A, Ziegler T. 2009. A combined charge and energy decomposition scheme for bond analysis. J. Chem. Theory Comput. 5:962–75
    [Google Scholar]
  24. 24. 
    Su P, Li H. 2009. Energy decomposition analysis of covalent bonds and intermolecular interactions. J. Chem. Phys. 131:014102
    [Google Scholar]
  25. 25. 
    Su P, Jiang Z, Chen Z, Wu W 2014. Energy decomposition scheme based on the generalized Kohn-Sham scheme. J. Phys. Chem. A 118:2531–42
    [Google Scholar]
  26. 26. 
    Su P, Tang Z, Wu W. 2020. Generalized Kohn-Sham energy decomposition analysis and its applications. Wiley Interdiscip. Rev. Comput. Mol. Sci. 10:e1460
    [Google Scholar]
  27. 27. 
    Mo Y, Gao J, Peyerimhoff SD. 2000. Energy decomposition analysis of intermolecular interactions using a block-localized wave function approach. J. Chem. Phys. 112:5530–38
    [Google Scholar]
  28. 28. 
    Mo Y, Song L, Lin Y. 2007. Block-localized wavefunction (BLW) method at the density functional theory (DFT) level. J. Phys. Chem. A 111:8291–301
    [Google Scholar]
  29. 29. 
    Stoll H, Wagenblast G, Preuß H. 1980. On the use of local basis sets for localized molecular orbitals. Theor. Chem. Acc. 57:169–78
    [Google Scholar]
  30. 30. 
    Gianinetti E, Raimondi M, Tornaghi E. 1996. Modification of the Roothaan equations to exclude BSSE from molecular interaction calculations. Int. J. Quantum Chem. 60:157–66
    [Google Scholar]
  31. 31. 
    Khaliullin RZ, Head-Gordon M, Bell AT. 2006. An efficient self-consistent field method for large systems of weakly interacting components. J. Chem. Phys. 124:204105
    [Google Scholar]
  32. 32. 
    Khaliullin RZ, Cobar EA, Lochan RC, Bell AT, Head-Gordon M. 2007. Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J. Phys. Chem. A 111:8753–65
    [Google Scholar]
  33. 33. 
    Khaliullin RZ, Bell AT, Head-Gordon M. 2008. Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals. J. Chem. Phys. 128:184112
    [Google Scholar]
  34. 34. 
    Horn PR, Sundstrom EJ, Baker TA, Head-Gordon M. 2013. Unrestricted absolutely localized molecular orbitals for energy decomposition analysis: theory and applications to intermolecular interactions involving radicals. J. Chem. Phys. 138:134119
    [Google Scholar]
  35. 35. 
    Ge Q, Mao Y, Head-Gordon M. 2018. Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals. J. Chem. Phys. 148:064105
    [Google Scholar]
  36. 36. 
    Ge Q, Head-Gordon M. 2018. Energy decomposition analysis for excimers using absolutely localized molecular orbitals within time-dependent density functional theory and configuration interaction with single excitations. J. Chem. Theory Comput. 14:5156–68
    [Google Scholar]
  37. 37. 
    Thirman J, Head-Gordon M. 2015. An energy decomposition analysis for second-order Møller–Plesset perturbation theory based on absolutely localized molecular orbitals. J. Chem. Phys. 143:084124
    [Google Scholar]
  38. 38. 
    Thirman J, Head-Gordon M. 2017. Efficient implementation of energy decomposition analysis for second-order Møller–Plesset perturbation theory and application to anion–π interactions. J. Phys. Chem. A 121:717–28
    [Google Scholar]
  39. 39. 
    Loipersberger M, Lee J, Mao Y, Das AK, Ikeda K et al. 2019. Energy decomposition analysis for interactions of radicals: theory and implementation at the MP2 level with application to hydration of halogenated benzene cations and complexes between CO2–• and pyridine and imidazole. J. Phys. Chem. A 123:9621–33
    [Google Scholar]
  40. 40. 
    Azar RJ, Horn PR, Sundstrom EJ, Head-Gordon M. 2013. Useful lower limits to polarization contributions to intermolecular interactions using a minimal basis of localized orthogonal orbitals: theory and analysis of the water dimer. J. Chem. Phys. 138:084102
    [Google Scholar]
  41. 41. 
    Horn PR, Head-Gordon M. 2015. Polarization contributions to intermolecular interactions revisited with fragment electric-field response functions. J. Chem. Phys. 143:114111
    [Google Scholar]
  42. 42. 
    Lao KU, Herbert JM. 2016. Energy decomposition analysis with a stable charge-transfer term for interpreting intermolecular interactions. J. Chem. Theory Comput. 12:2569–82
    [Google Scholar]
  43. 43. 
    Jeziorski B, Moszynski R, Szalewicz K. 1994. Perturbation theory approach to intermolecular potential energy surfaces of van der Waals complexes. Chem. Rev. 94:1887–930
    [Google Scholar]
  44. 44. 
    Misquitta AJ, Podeszwa R, Jeziorski B, Szalewicz K. 2005. Intermolecular potentials based on symmetry-adapted perturbation theory with dispersion energies from time-dependent density-functional calculations. J. Chem. Phys. 123:214103
    [Google Scholar]
  45. 45. 
    Stone AJ, Misquitta AJ. 2009. Charge-transfer in symmetry-adapted perturbation theory. Chem. Phys. Lett. 473:201–5
    [Google Scholar]
  46. 46. 
    Misquitta AJ. 2013. Charge transfer from regularized symmetry-adapted perturbation theory. J. Chem. Theory Comput. 9:5313–26
    [Google Scholar]
  47. 47. 
    Mao Y, Ge Q, Horn PR, Head-Gordon M. 2018. On the computational characterization of charge-transfer effects in noncovalently bound molecular complexes. J. Chem. Theory Comput. 14:2401–17
    [Google Scholar]
  48. 48. 
    Lao K, Schaffer R, Jansen G, Herbert J. 2015. Accurate description of intermolecular interactions involving ions using symmetry-adapted perturbation theory. J. Chem. Theor. Comput. 11:2473–86
    [Google Scholar]
  49. 49. 
    Glendening ED, Streitwieser A. 1994. Natural energy decomposition analysis: an energy partitioning procedure for molecular interactions with application to weak hydrogen bonding, strong ionic, and moderate donor–acceptor interactions. J. Chem. Phys. 100:2900–9
    [Google Scholar]
  50. 50. 
    Glendening ED. 2005. Natural energy decomposition analysis: extension to density functional methods and analysis of cooperative effects in water clusters. J. Phys. Chem. A 109:11936–40
    [Google Scholar]
  51. 51. 
    Reed AE, Curtiss LA, Weinhold F. 1988. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev. 88:899–926
    [Google Scholar]
  52. 52. 
    Stone AJ. 2017. Natural bond orbitals and the nature of the hydrogen bond. J. Phys. Chem. A 121:1531–34
    [Google Scholar]
  53. 53. 
    Khaliullin RZ, Bell AT, Head-Gordon M. 2009. Electron donation in the water–water hydrogen bond. Chem. Eur. J. 15:851–55
    [Google Scholar]
  54. 54. 
    Horn PR, Mao Y, Head-Gordon M. 2016. Defining the contributions of electrostatics, Pauli repulsion and dispersion in density functional theory calculations of intermolecular interaction energies. J. Chem. Phys. 144:114107
    [Google Scholar]
  55. 55. 
    Thirman J, Head-Gordon M. 2014. Electrostatic domination of the effect of electron correlation in intermolecular interactions. J. Phys. Chem. Lett. 5:1380–85
    [Google Scholar]
  56. 56. 
    Pernal K, Podeszwa R, Patkowski K, Szalewicz K. 2009. Dispersionless density functional theory. Phys. Rev. Lett. 103:263201
    [Google Scholar]
  57. 57. 
    Zhang Y, Yang W 1998. Comment on ``Generalized Gradient Approximation Made Simple. ''. Phys. Rev. Lett. 80:890–90
    [Google Scholar]
  58. 58. 
    Mardirossian N, Head-Gordon M. 2014. ωB97X-V: a 10-parameter, range-separated hybrid, generalized gradient approximation density functional with nonlocal correlation, designed by a survival-of-the-fittest strategy. Phys. Chem. Chem. Phys. 16:9904–24
    [Google Scholar]
  59. 59. 
    Nagata T, Takahashi O, Saito K, Iwata S. 2001. Basis set superposition error free self-consistent field method for molecular interaction in multi-component systems: projection operator formalism. J. Chem. Phys. 115:3553–60
    [Google Scholar]
  60. 60. 
    Weigend F, Ahlrichs R. 2005. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7:3297–305
    [Google Scholar]
  61. 61. 
    Veccham SP, Lee J, Mao Y, Horn PR, Head-Gordon M. 2021. A non-perturbative pairwise-additive analysis of charge transfer contributions to intermolecular interaction energies. Phys. Chem. Chem. Phys. 23:928–43
    [Google Scholar]
  62. 62. 
    Mo Y. 2003. Geometrical optimization for strictly localized structures. J. Chem. Phys. 119:1300–6
    [Google Scholar]
  63. 63. 
    Loipersberger M, Mao Y, Head-Gordon M. 2020. Variational forward-backward charge transfer analysis based on absolutely localized molecular orbitals: energetics and molecular properties. J. Chem. Theory Comput. 16:1073–89
    [Google Scholar]
  64. 64. 
    Ramos-Cordoba E, Lambrecht DS, Head-Gordon M. 2011. Charge-transfer and the hydrogen bond: spectroscopic and structural implications from electronic structure calculations. Faraday Discuss 150:345–62
    [Google Scholar]
  65. 65. 
    Mao Y, Head-Gordon M. 2019. Probing blue-shifting hydrogen bonds with adiabatic energy decomposition analysis. J. Phys. Chem. Lett. 10:3899–905
    [Google Scholar]
  66. 66. 
    Hobza P, Havlas Z. 2002. Improper, blue-shifting hydrogen bond. Theor. Chem. Acc. 108:325–34
    [Google Scholar]
  67. 67. 
    Hermansson K. 2002. Blue-shifting hydrogen bonds. J. Phys. Chem. A 106:4695–702
    [Google Scholar]
  68. 68. 
    Allen AD, Senoff CV. 1965. Nitrogenopentammineruthenium(II) complexes. Chem. Commun. 24:621–22
    [Google Scholar]
  69. 69. 
    Dewar J. 1951. A review of the π-complex theory. Bull. Soc. Chim. Fr. 18:C71–79
    [Google Scholar]
  70. 70. 
    Chatt J, Duncanson LA. 1953. Olefin co-ordination compounds. Part III. Infra-red spectra and structure: attempted preparation of acetylene complexes. J. Chem. Soc. 1953:2939–47
    [Google Scholar]
  71. 71. 
    Herrmann WA. 1990. 100 years of metal carbonyls: a serendipitous chemical discovery of major scientific and industrial impact. J. Organomet. Chem. 383:21–44
    [Google Scholar]
  72. 72. 
    Lupinetti AJ, Frenking G, Strauss SH. 1998. Nonclassical metal carbonyls: appropriate definitions with a theoretical justification. Angew. Chem. Int. Ed. 37:2113–16
    [Google Scholar]
  73. 73. 
    Rossomme EC, Lininger CN, Bell AT, Head-Gordon T, Head-Gordon M. 2020. Electronic structure calculations permit identification of the driving forces behind frequency shifts in transition metal monocarbonyls. Phys. Chem. Chem. Phys. 22:781–98
    [Google Scholar]
  74. 74. 
    Drance MJ, Sears JD, Mrse AM, Moore CE, Rheingold AL et al. 2019. Terminal coordination of diatomic boron monofluoride to iron. Science 363:1203–5
    [Google Scholar]
  75. 75. 
    Peverati R, Platt SP, Attah IK, Aziz SG, El-Shall MS, Head-Gordon M. 2017. Nucleophilic aromatic addition in ionizing environments: observation and analysis of new C–N valence bonds in complexes between naphthalene radical cation and pyridine. J. Am. Chem. Soc. 139:11923–32
    [Google Scholar]
  76. 76. 
    Lifson S, Warshel A. 1968. Consistent force field for calculations of conformations, vibrational spectra, and enthalpies of cycloalkane and n-alkane molecules. J. Chem. Phys. 49:5116–29
    [Google Scholar]
  77. 77. 
    Albaugh A, Boateng HA, Bradshaw RT, Demerdash ON, Dziedzic J et al. 2016. Advanced potential energy surfaces for molecular simulation. J. Phys. Chem. B 120:9811–32
    [Google Scholar]
  78. 78. 
    Zgarbová M, Otyepka M, Šponer J, Hobza P, Jurečka P. 2010. Large-scale compensation of errors in pairwise-additive empirical force fields: comparison of amber intermolecular terms with rigorous DFT-SAPT calculations. Phys. Chem. Chem. Phys. 12:10476–93
    [Google Scholar]
  79. 79. 
    Halgren TA. 1992. Representation of van der Waals (vdW) interactions in molecular mechanics force-fields—potential form, combination rules, and vdW parameters. J. Am. Chem. Soc. 114:7827–43
    [Google Scholar]
  80. 80. 
    Ren PY, Ponder JW. 2003. Polarizable atomic multipole water model for molecular mechanics simulation. J. Phys. Chem. B 107:5933–47
    [Google Scholar]
  81. 81. 
    Ponder JW, Wu C, Ren P, Pande VS, Chodera JD et al. 2010. Current status of the AMOEBA polarizable force field. J. Phys. Chem. B 114:2549–64
    [Google Scholar]
  82. 82. 
    Wang LP, Head-Gordon T, Ponder JW, Ren P, Chodera JD et al. 2013. Systematic improvement of a classical molecular model of water. J. Phys. Chem. B 117:9956–72
    [Google Scholar]
  83. 83. 
    Laury ML, Wang LP, Pande VS, Head-Gordon T, Ponder JW. 2015. Revised parameters for the AMOEBA polarizable atomic multipole water model. J. Phys. Chem. B 119:9423–37
    [Google Scholar]
  84. 84. 
    Warshel A, Kuwajima S. 1990. Incorporating electric polarizabilities in water–water interaction potentials. J. Phys. Chem. 94:460–66
    [Google Scholar]
  85. 85. 
    Rick S, Stuart S, Berne B. 1994. Dynamical fluctuating charge force-fields: application to liquid water. J. Chem. Phys. 101:6141–56
    [Google Scholar]
  86. 86. 
    Gao JL. 1997. Toward a molecular orbital derived empirical potential for liquid simulations. J. Phys. Chem. B 101:657–63
    [Google Scholar]
  87. 87. 
    Lamoureux G, MacKerell AD, Roux B. 2003. A simple polarizable model of water based on classical Drude oscillators. J. Chem. Phys. 119:5185–97
    [Google Scholar]
  88. 88. 
    Yu HB, Hansson T, van Gunsteren WF. 2003. Development of a simple, self-consistent polarizable model for liquid water. J. Chem. Phys. 118:221–34
    [Google Scholar]
  89. 89. 
    Paesani F, Iuchi S, Voth GA. 2007. Quantum effects in liquid water from an ab initio–based polarizable force field. J. Chem. Phys. 127:074506
    [Google Scholar]
  90. 90. 
    Huang J, Lopes PEM, Roux B, MacKerell AD. 2014. Recent advances in polarizable force fields for macromolecules: microsecond simulations of proteins using the classical Drude oscillator model. J. Phys. Chem. Lett. 5:3144–50
    [Google Scholar]
  91. 91. 
    Das AK, Demerdash ON, Head-Gordon T. 2018. Improvements to the AMOEBA force field by introducing anisotropic atomic polarizability of the water molecule. J. Chem. Theory Comput. 14:6722–33
    [Google Scholar]
  92. 92. 
    Lucas TR, Bauer BA, Patel S 2012. Charge equilibration force fields for molecular dynamics simulations of lipids, bilayers, and integral membrane protein systems. Biochim. Biophys. Acta Biomembr. 1818:318–29
    [Google Scholar]
  93. 93. 
    Lemkul JA, Huang J, Roux B, MacKerell AD Jr 2016. An empirical polarizable force field based on the classical Drude oscillator model: development history and recent applications. Chem. Rev. 116:4983–5013
    [Google Scholar]
  94. 94. 
    Dykstra CE. 1993. Electrostatic interaction potentials in molecular force fields. Chem. Rev. 93:2339–53
    [Google Scholar]
  95. 95. 
    Demerdash O, Yap EH, Head-Gordon T. 2014. Advanced potential energy surfaces for condensed phase simulation. Annu. Rev. Phys. Chem. 65:149–74
    [Google Scholar]
  96. 96. 
    Lopes PEM, Huang J, Shim J, Luo Y, Li H et al. 2013. Polarizable force field for peptides and proteins based on the classical Drude oscillator. J. Chem. Theory Comput. 9:5430–49
    [Google Scholar]
  97. 97. 
    Wang LP, Martinez TJ, Pande VS. 2014. Building force fields: an automatic, systematic, and reproducible approach. J. Phys. Chem. Lett. 5:1885–91
    [Google Scholar]
  98. 98. 
    Wang LP, McKiernan KA, Gomes J, Beauchamp KA, Head-Gordon T et al. 2017. Building a more predictive protein force field: a systematic and reproducible route to AMBER-FB15. J. Phys. Chem. B 121:4023–39
    [Google Scholar]
  99. 99. 
    Demerdash O, Mao Y, Liu T, Head-Gordon M, Head-Gordon T. 2017. Assessing many-body contributions to intermolecular interactions of the AMOEBA force field using energy decomposition analysis of electronic structure calculations. J. Chem. Phys. 147:161721
    [Google Scholar]
  100. 100. 
    Stone AJ. 1993. Computation of charge-transfer energies by perturbation theory. Chem. Phys. Lett. 211:101–9
    [Google Scholar]
  101. 101. 
    Demerdash ON, Head-Gordon T. 2016. Convergence of the many-body expansion for energy and forces for classical polarizable models in the condensed phase. J. Chem. Theory Comput. 12:3884–93
    [Google Scholar]
  102. 102. 
    Das AK, Urban L, Leven I, Loipersberger M, Aldossary A et al. 2019. Development of an advanced force field for water using variational energy decomposition analysis. J. Chem. Theory Comput. 15:5001–13
    [Google Scholar]
  103. 103. 
    Mao Y, Demerdash O, Head-Gordon M, Head-Gordon T. 2016. Assessing ion–water interactions in the AMOEBA force field using energy decomposition analysis of electronic structure calculations. J. Chem. Theory Comput. 12:5422–37
    [Google Scholar]
  104. 104. 
    Mao Y, Shao Y, Dziedzic J, Skylaris CK, Head-Gordon T, Head-Gordon M. 2017. Performance of the AMOEBA water model in the vicinity of QM solutes: a diagnosis using energy decomposition analysis. J. Chem. Theory Comput. 13:1963–79
    [Google Scholar]
  105. 105. 
    Demerdash O, Wang LP, Head-Gordon T. 2018. Advanced models for water simulations. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8:e1355
    [Google Scholar]
  106. 106. 
    Piquemal JP, Gresh N, Giessner-Prettre C. 2003. Improved formulas for the calculation of the electrostatic contribution to the intermolecular interaction energy from multipolar expansion of the electronic distribution. J. Phys. Chem. A 107:10353–59
    [Google Scholar]
  107. 107. 
    Wang Q, Rackers JA, He C, Qi R, Narth C et al. 2015. General model for treating short-range electrostatic penetration in a molecular mechanics force field. J. Chem. Theory Comput. 11:2609–18
    [Google Scholar]
  108. 108. 
    Rackers JA, Wang Q, Liu C, Piquemal JP, Ren P, Ponder JW. 2017. An optimized charge penetration model for use with the AMOEBA force field. Phys. Chem. Chem. Phys. 19:276–91
    [Google Scholar]
  109. 109. 
    Jakobsen S, Jensen F. 2016. Searching the force field electrostatic multipole parameter space. J. Chem. Theory Comput. 12:1824–32
    [Google Scholar]
  110. 110. 
    Piquemal JP, Chelli R, Procacci P, Gresh N. 2007. Key role of the polarization anisotropy of water in modeling classical polarizable force fields. J. Phys. Chem. A 111:8170–76
    [Google Scholar]
  111. 111. 
    Brookes DH, Head-Gordon T. 2015. Family of oxygen–oxygen radial distribution functions for water. J. Phys. Chem. Lett. 6:2938–43
    [Google Scholar]
  112. 112. 
    Babin V, Leforestier C, Paesani F. 2013. Development of a ``first principles'' water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. J. Chem. Theory Comput. 9:5395–403
    [Google Scholar]
  113. 113. 
    Babin V, Medders GR, Paesani F. 2014. Development of a ``first principles'' water potential with flexible monomers. II. Trimer potential energy surface, third virial coefficient, and small clusters. J. Chem. Theory Comput. 10:1599–607
    [Google Scholar]
  114. 114. 
    Levine DS, Horn PR, Mao Y, Head-Gordon M. 2016. Variational energy decomposition analysis of chemical bonding. 1. Spin-pure analysis of single bonds. J. Chem. Theory Comput. 12:4812–20
    [Google Scholar]
  115. 115. 
    Levine DS, Head-Gordon M 2017. Energy decomposition analysis of single bonds within Kohn–Sham density functional theory. PNAS 114:12649–56
    [Google Scholar]
  116. 116. 
    Mao Y, Loipersberger M, Kron KJ, Derrick JS, Chang CJ et al. 2021. Consistent inclusion of continuum solvent in energy decomposition analysis: theory and application to molecular CO2 reduction catalysts. Chem. Sci. 12:1398–414
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-115149
Loading
/content/journals/10.1146/annurev-physchem-090419-115149
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error