1932

Abstract

Since external magnetic fields were first employed to deflect paramagnetic atoms in 1921, a range of magnetic field–based methods have been introduced to state-selectively manipulate paramagnetic species. These methods include magnetic guides, which selectively filter paramagnetic species from all other components of a beam, and magnetic traps, where paramagnetic species can be spatially confined for extended periods of time. However, many of these techniques were developed for atomic—rather than molecular—paramagnetic species. It has proven challenging to apply some of these experimental methods developed for atoms to paramagnetic molecules. Thanks to the emergence of new experimental approaches and new combinations of existing techniques, the past decade has seen significant progress toward the manipulation and control of paramagnetic molecules. This review identifies the key methods that have been implemented for the state-selective manipulation of paramagnetic molecules—discussing the motivation, state of the art, and future prospects of the field. Key applications include the ability to control chemical interactions, undertake precise spectroscopic measurements, and challenge our understanding of chemical reactivity at a fundamental level.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-090419-053842
2021-04-20
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/physchem/72/1/annurev-physchem-090419-053842.html?itemId=/content/journals/10.1146/annurev-physchem-090419-053842&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Stern O. 1921. Ein Weg zur experimentellen Prüfung der Richtungsquantelung im Magnetfeld. Z. Phys. 7:249–53
    [Google Scholar]
  2. 2. 
    Gerlach W, Stern O. 1922. Der experimentelle Nachweis des magnetischen Moments des Silberatoms. Z. Phys. 8:110–11
    [Google Scholar]
  3. 3. 
    Gerlach W, Stern O. 1922. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld. Z. Phys. 9:349–52
    [Google Scholar]
  4. 4. 
    Gerlach W, Stern O. 1922. Das magnetische Moment des Silberatoms. Z. Phys. 9:353–55
    [Google Scholar]
  5. 5. 
    Franklin A, Perovic S. 2019. Experiments in physics, appendix 5. Right experiment, wrong theory: the Stern–Gerlach experiment. The Stanford Encyclopedia of Philosophy EN Zalta Stanford, CA: Metaphys. Res. Lab, Stanford Univ https://plato.stanford.edu/archives/win2019/entries/physics-experiment/
    [Google Scholar]
  6. 6. 
    Jansen P, Merkt F. 2020. Manipulating beams of paramagnetic atoms and molecules using inhomogeneous magnetic fields. Prog. Nucl. Magn. Reson. Spectrosc. 120/121 118–48
    [Google Scholar]
  7. 7. 
    Vaida V. 2016. Atmospheric radical chemistry revisited. Science 353:650
    [Google Scholar]
  8. 8. 
    Ehhalt DH. 1987. Free radicals in the atmosphere. Free Radic. Res. Commun. 3:153–64
    [Google Scholar]
  9. 9. 
    Anderson JG. 1987. Free radicals in the Earth's atmosphere: their measurement and interpretation. Annu. Rev. Phys. Chem. 38:489–520
    [Google Scholar]
  10. 10. 
    Dunham T Jr. 1937. Interstellar neutral potassium and neutral calcium. Publ. Astron. Soc. Pac. 49:26–28
    [Google Scholar]
  11. 11. 
    Swings P, Rosenfeld L. 1937. Considerations regarding interstellar molecules. Astrophys. J. 86:483–86
    [Google Scholar]
  12. 12. 
    Thiebaud J, Aluculesei A, Fittschen C. 2007. Formation of HO2 radicals from the photodissociation of H2O2 at 248 nm. J. Chem. Phys. 126:186101
    [Google Scholar]
  13. 13. 
    Ghassemzadeh L, Peckham TJ, Weissbach T, Luo X, Holdcroft S. 2013. Selective formation of hydrogen and hydroxyl radicals by electron beam irradiation and their reactivity with perfluorosulfonated acid ionomer. J. Am. Chem. Soc. 135:15923–32
    [Google Scholar]
  14. 14. 
    Slevin J, Stirling W. 1981. Radio frequency atomic hydrogen beam source. Rev. Sci. Instrum. 52:1780–82
    [Google Scholar]
  15. 15. 
    Herzberg G. 1981. Rydberg spectra of triatomic hydrogen and of the ammonium radical. Faraday Discuss. Chem. Soc. 71:165–73
    [Google Scholar]
  16. 16. 
    Karra M, Sharma K, Friedrich B, Kais S, Herschbach D. 2016. Prospects for quantum computing with an array of ultracold polar paramagnetic molecules. J. Chem. Phys. 144:094301
    [Google Scholar]
  17. 17. 
    Hudson JJ, Kara DM, Smallman IJ, Sauer BE, Tarbutt MR, Hinds EA. 2011. Improved measurement of the shape of the electron. Nature 473:493–96
    [Google Scholar]
  18. 18. 
    Ho CJ, Devlin JA, Rabey IM, Yzombard P, Lim J et al. 2020. New techniques for a measurement of the electron's electric dipole moment. New J. Phys. 22:053031
    [Google Scholar]
  19. 19. 
    Kügler K-J, Moritz K, Paul W, Trinks U. 1985. Nestor—a magnetic storage ring for slow neutrons. Nucl. Instrum. Methods 228:240–58
    [Google Scholar]
  20. 20. 
    Thompson D, Lovelace RVE, Lee DM. 1989. Storage rings for spin-polarized hydrogen. J. Opt. Soc. Am. B 6:2227–34
    [Google Scholar]
  21. 21. 
    Ghaffari B, Gerton JM, McAlexander WI, Strecker KE, Homan DM, Hulet RG. 1999. Laser-free slow atom source. Phys. Rev. A 60:3878–81
    [Google Scholar]
  22. 22. 
    Goepfert A, Lison F, Schütze R, Wynands R, Haubrich D, Meschede D. 1999. Efficient magnetic guiding and deflection of atomic beams with moderate velocities. Appl. Phys. B 69:217–22
    [Google Scholar]
  23. 23. 
    Greiner M, Bloch I, Hänsch TW, Esslinger T. 2001. Magnetic transport of trapped cold atoms over a large distance. Phys. Rev. A 63:031401(R)
    [Google Scholar]
  24. 24. 
    Watanabe D, Ohoyama H, Matsumura T, Kasai T. 2006. Steric effect in the energy transfer reaction of Ar(3P2) + N2. J. Chem. Phys. 125:084316
    [Google Scholar]
  25. 25. 
    Watanabe D, Ohoyama H, Matsumura T, Kasai T. 2006. Characterization of an oriented metastable atom source based on a magnetic hexapole. Eur. Phys. J. D 38:219–23
    [Google Scholar]
  26. 26. 
    Beardmore JP, Palmer AJ, Kuiper JC, Sang RT. 2009. A hexapole magnetic guide for neutral atomic beams. Rev. Sci. Instrum. 80:073105
    [Google Scholar]
  27. 27. 
    Borodi G, Luca A, Gerlich D. 2009. Reactions of with H, H2 and deuterated analogues. Int. J. Mass Spectrom. 280:218–25
    [Google Scholar]
  28. 28. 
    Tonyushkin A, Prentiss M 2010. Straight macroscopic magnetic guide for cold atom interferometer. J. Appl. Phys. 108:094904
    [Google Scholar]
  29. 29. 
    Jankunas J, Reisyan KS, Osterwalder A. 2015. Preparation of state purified beams of He, Ne, C, N, and O atoms. J. Chem. Phys. 142:104311
    [Google Scholar]
  30. 30. 
    van der Poel APP, Dulitz K, Softley TP, Bethlem HL. 2015. A compact design for a magnetic synchrotron to store beams of hydrogen atoms. New J. Phys. 17:055012
    [Google Scholar]
  31. 31. 
    Dulitz K, Softley TP. 2016. Velocity-selected magnetic guiding of Zeeman-decelerated hydrogen atoms. Eur. Phys. J. D 70:19
    [Google Scholar]
  32. 32. 
    Fein YY, Shayeghi A, Mairhofer L, Kialka F, Rieser P et al. 2020. Quantum-assisted measurement of atomic diamagnetism. Phys. Rev. X 10:011014
    [Google Scholar]
  33. 33. 
    Wakayama NI. 1995. Magnetic acceleration and deceleration of O2 gas streams injected into air. IEEE Trans. Magn. 31:897–901
    [Google Scholar]
  34. 34. 
    Wakayama NI, Sugie M. 1996. Magnetic promotion of combustion in diffusion flames. Physica B 216:403–5
    [Google Scholar]
  35. 35. 
    Cai J, Wang L, Wu P, Li Z, Tong L, Sun S. 2008. Study on oxygen enrichment from air by application of the gradient magnetic field. J. Magn. Magn. Mater. 320:171–81
    [Google Scholar]
  36. 36. 
    Patterson D, Doyle JM. 2007. Bright, guided molecular beam with hydrodynamic enhancement. J. Chem. Phys. 126:154307
    [Google Scholar]
  37. 37. 
    Ohoyama H, Maruyama S. 2012. Alignment effect of N2(A3) in the energy transfer reaction of aligned N2(A3) + NO(X2Π) → NO(A2) + N2 (X1). J. Phys. Chem. A 116:6685–92
    [Google Scholar]
  38. 38. 
    Henson AB, Gersten S, Shagam Y, Narevicius J, Narevicius E. 2012. Observation of resonances in Penning ionization reactions at sub-Kelvin temperatures in merged beams. Science 338:234–38
    [Google Scholar]
  39. 39. 
    Jankunas J, Bertsche B, Jachymski K, Hapka M, Osterwalder A. 2014. Dynamics of gas phase Ne* + NH3 and Ne* + ND3 Penning ionisation at low temperatures. J. Chem. Phys. 140:244302
    [Google Scholar]
  40. 40. 
    Lavert-Ofir E, Shagam Y, Henson AB, Gersten S, Klos J et al. 2014. Observation of the isotope effect in sub-Kelvin reactions. Nat. Chem. 6:332–35
    [Google Scholar]
  41. 41. 
    Vanhaecke N, Meier U, Andrist M, Meier BH, Merkt F. 2007. Multistage Zeeman deceleration of hydrogen atoms. Phys. Rev. A 75:031402(R)
    [Google Scholar]
  42. 42. 
    Narevicius E, Parthey CG, Libson A, Narevicius J, Chavez I et al. 2007. An atomic coilgun: using pulsed magnetic fields to slow a supersonic beam. New J. Phys. 9:358
    [Google Scholar]
  43. 43. 
    Narevicius E, Libson A, Parthey CG, Chavez I, Narevicius J et al. 2008. Stopping supersonic oxygen with a series of pulsed electromagnetic coils: a molecular coilgun. Phys. Rev. A 77:051401(R)
    [Google Scholar]
  44. 44. 
    Hogan SD, Motsch M, Merkt F. 2011. Deceleration of supersonic beams using inhomogeneous electric and magnetic fields. Phys. Chem. Chem. Phys. 42:18705–23
    [Google Scholar]
  45. 45. 
    van de Meerakker SYT, Bethlem HL, Vanhaecke N, Meijer G. 2012. Manipulation and control of molecular beams. Chem. Rev. 112:4828–78
    [Google Scholar]
  46. 46. 
    Narevicius E, Raizen MG. 2012. Toward cold chemistry with magnetically decelerated supersonic beams. Chem. Rev. 112:4879–89
    [Google Scholar]
  47. 47. 
    Motsch M, Jansen P, Agner JA, Schmutz H, Merkt F. 2014. Slow and velocity-tunable beams of metastable He2 by multistage Zeeman deceleration. Phys. Rev. A 89:043420
    [Google Scholar]
  48. 48. 
    Wiederkehr AW, Schmutz H, Motsch M, Merkt F. 2012. Velocity-tunable slow beams of cold O2 in a single spin-rovibronic state with full angular-momentum orientation by multistage Zeeman deceleration. Mol. Phys. 110:1807–14
    [Google Scholar]
  49. 49. 
    Momose T, Liu Y, Zhou S, Djuricanin P, Carty D. 2013. Manipulation of translational motion of methyl radicals by pulsed magnetic fields. Phys. Chem. Chem. Phys. 15:1772–77
    [Google Scholar]
  50. 50. 
    Plomp V, Gao Z, Cremers T, van de Meerakker SYT. 2019. Multistage Zeeman deceleration of NH3X3 radicals. Phys. Rev. A 99:033417
    [Google Scholar]
  51. 51. 
    Plomp V, Gao Z, Cremers T, Besemer M, van de Meerakker SYT. 2020. High-resolution imaging of molecular collisions using a Zeeman decelerator. J. Chem. Phys. 152:091103
    [Google Scholar]
  52. 52. 
    Cremers T, Chefdeville S, Plomp V, Janssen N, Sweers E, van de Meerakker SYT. 2018. Multistage Zeeman deceleration of atomic and molecular oxygen. Phys. Rev. A 98:033406
    [Google Scholar]
  53. 53. 
    Wiederkehr AW, Hogan SD, Merkt F. 2010. Phase stability in a multistage Zeeman decelerator. Phys. Rev. A 82:043428
    [Google Scholar]
  54. 54. 
    Wiederkehr AW, Motsch M, Hogan SD, Andrist M, Schmutz H et al. 2011. Multistage Zeeman deceleration of metastable neon. J. Chem. Phys. 135:214202
    [Google Scholar]
  55. 55. 
    Dulitz K, Motsch M, Vanhaecke N, Softley TP. 2014. Getting a grip on the transverse motion in a Zeeman decelerator. J. Chem. Phys. 140:104201
    [Google Scholar]
  56. 56. 
    Dulitz K, Vanhaecke N, Softley TP. 2015. Model for the overall phase-space acceptance in a Zeeman decelerator. Phys. Rev. A 91:013409
    [Google Scholar]
  57. 57. 
    Toscano J, Tauschinsky A, Dulitz K, Rennick CJ, Heazlewood BR, Softley TP. 2017. Zeeman deceleration beyond periodic phase space stability. New J. Phys. 19:083016
    [Google Scholar]
  58. 58. 
    Toscano J, Wu LY, Hejduk M, Heazlewood BR. 2019. Evolutionary algorithm optimization of Zeeman deceleration: Is it worthwhile for longer decelerators?. J. Phys. Chem. A 123:5388–94
    [Google Scholar]
  59. 59. 
    Lavert-Ofir E, David L, Henson AB, Gersten S, Narevicius J, Narevicius E. 2011. Stopping paramagnetic supersonic beams: the advantage of a co-moving magnetic trap decelerator. Phys. Chem. Chem. Phys. 13:18948–53
    [Google Scholar]
  60. 60. 
    Lavert-Ofir E, Gersten S, Henson AB, Shani I, David L et al. 2011. A moving magnetic trap decelerator: a new source of cold atoms and molecules. New J. Phys. 13:103030
    [Google Scholar]
  61. 61. 
    Akerman N, Karpov M, David L, Lavert-Ofir E, Narevicius J, Narevicius E. 2015. Simultaneous deceleration of atoms and molecules in a supersonic beam. New J. Phys. 17:065015
    [Google Scholar]
  62. 62. 
    Cremers T, Chefdeville S, Janssen N, Sweers E, Koot S et al. 2017. Multistage Zeeman decelerator for molecular-scattering studies. Phys. Rev. A 95:043415
    [Google Scholar]
  63. 63. 
    Cremers T, Janssen N, Sweers E, van de Meerakker SYT. 2019. Design and construction of a multistage Zeeman decelerator for crossed molecular beams scattering experiments. Rev. Sci. Instrum. 90:013104
    [Google Scholar]
  64. 64. 
    Toscano J, Rennick CJ, Softley TP, Heazlewood BR. 2018. A magnetic guide to purify radical beams. J. Chem. Phys. 149:174201
    [Google Scholar]
  65. 65. 
    Miossec C, Wu LY, Bertier P, Hejduk M, Toscano J, Heazlewood BR. 2020. A stand-alone magnetic guide for producing tuneable radical beams. J. Chem. Phys. 153:104202
    [Google Scholar]
  66. 66. 
    Liu Y, Zhou S, Zhong W, Djuricanin P, Momose T. 2015. One-dimensional confinement of magnetically decelerated supersonic beams of O2 molecules. Phys. Rev. A 91:021403(R)
    [Google Scholar]
  67. 67. 
    Liu Y, Vashishta M, Djuricanin P, Zhou S, Zhong W et al. 2017. Magnetic trapping of cold methyl radicals. Phys. Rev. Lett. 118:093201
    [Google Scholar]
  68. 68. 
    Fitch NJ, Tarbutt MR. 2016. Principles and design of a Zeeman–Sisyphus decelerator for molecular beams. Chem. Phys. Chem. 17:3609–23
    [Google Scholar]
  69. 69. 
    Petzold M, Kaebert P, Gersema P, Siercke M, Ospelkaus S. 2018. A Zeeman slower for diatomic molecules. New J. Phys. 20:042001
    [Google Scholar]
  70. 70. 
    Bergeman T, Erez G, Metcalf HJ. 1987. Magnetostatic trapping fields for neutral atoms. Phys. Rev. A 35:1535–46
    [Google Scholar]
  71. 71. 
    deCarvalho R, Doyle JM, Friedrich B, Guillet T, Kim J et al. 1999. Buffer-gas loaded magnetic traps for atoms and molecules: a primer. Eur. Phys. J. D 7:2889–309
    [Google Scholar]
  72. 72. 
    Tsikata E, Campbell WC, Hummon MT, Lu H-I, Doyle JM. 2010. Magnetic trapping of NH molecules with 20 s lifetimes. New J. Phys. 12:065028
    [Google Scholar]
  73. 73. 
    Collopy AL, Ding S, Wu Y, Finneran IA, Anderegg L et al. 2018. 3D magneto-optical trap of yttrium monoxide. Phys. Rev. Lett. 121:213201
    [Google Scholar]
  74. 74. 
    Barry JF, McCarron DJ, Norrgard EB, Steinecker MH, DeMille D. 2014. Magneto-optical trapping of a diatomic molecule. Nature 512:286–89
    [Google Scholar]
  75. 75. 
    Williams HJ, Truppe S, Hambach M, Caldwell L, Fitch NJ et al. 2017. Characteristics of a magneto-optical trap of molecules. New J. Phys. 19:113035
    [Google Scholar]
  76. 76. 
    Baum L, Vilas NB, Hallas C, Augenbraun BL, Raval S et al. 2020. 1D magneto-optical trap of polyatomic molecules. Phys. Rev. Lett. 124:133201
    [Google Scholar]
  77. 77. 
    Segev Y, Pitzer M, Karpov M, Akerman N, Narevicius J, Narevicius E. 2019. Collisions between cold molecules in a superconducting magnetic trap. Nature 572:189–93
    [Google Scholar]
  78. 78. 
    Sawyer BC, Stuhl BK, Wang D, Yeo M, Ye J. 2008. Molecular beam collisions with a magnetically trapped target. Phys. Rev. Lett. 101:203203
    [Google Scholar]
  79. 79. 
    Haas D, von Planta C, Kierspel T, Zhang D, Willitsch S. 2019. Long-term trapping of Stark-decelerated molecules. Commun. Phys. 2:101
    [Google Scholar]
  80. 80. 
    McCarron D. 2018. Laser cooling and trapping molecules. J. Phys. B 51:212001
    [Google Scholar]
  81. 81. 
    Williams HJ, Caldwell L, Fitch NJ, Truppe S, Rodewald J et al. 2018. Magnetic trapping and coherent control of laser-cooled molecules. Phys. Rev. Lett. 120:163201
    [Google Scholar]
  82. 82. 
    Anderegg L, Augenbraun BL, Bao Y, Burchesky S, Cheuk LW et al. 2018. Laser cooling of optically trapped molecules. Nat. Phys. 14:890–93
    [Google Scholar]
  83. 83. 
    Danzl JG, Haller E, Gustavsson M, Mark MJ, Hart R et al. 2008. Quantum gas of deeply bound ground state molecules. Science 321:1062–66
    [Google Scholar]
  84. 84. 
    Rvachov TM, Son H, Sommer AT, Ebadi S, Park JJ et al. 2017. Long-lived ultracold molecules with electric and magnetic dipole moments. Phys. Rev. Lett. 119:143001
    [Google Scholar]
  85. 85. 
    Trottier A, Carty D, Wrede E. 2011. Photostop: production of zero-velocity molecules by photodissociation in a molecular beam. Mol. Phys. 109:725–33
    [Google Scholar]
  86. 86. 
    Rennick CJ, Lam J, Doherty WG, Softley TP. 2014. Magnetic trapping of cold bromine atoms. Phys. Rev. Lett. 112:023002
    [Google Scholar]
  87. 87. 
    Eardley JS, Warner N, Deng LZ, Carty D, Wrede E. 2017. Magnetic trapping of SH radicals. Phys. Chem. Chem. Phys. 19:8423–27
    [Google Scholar]
  88. 88. 
    Sawyer BC, Stuhl BK, Yeo M, Tscherbul TV, Hummon MT et al. 2011. Cold heteromolecular dipolar collisions. Phys. Chem. Chem. Phys. 13:19059–66
    [Google Scholar]
  89. 89. 
    Hummon MT, Tscherbul TV, Klos J, Lu H-I, Tsikata E et al. 2011. Cold N + NH collisions in a magnetic trap. Phys. Rev. Lett. 106:053201
    [Google Scholar]
  90. 90. 
    Stuhl BK, Hummon MT, Yeo M, Quéméner G, Bohn JL, Ye J. 2012. Evaporative cooling of the dipolar hydroxyl radical. Nature 492:396–400
    [Google Scholar]
  91. 91. 
    Karpov M, Pitzer M, Segev Y, Narevicius J, Narevicius E. 2020. Low-energy collisions between carbon atoms and oxygen molecules in a magnetic trap. New J. Phys 22:103055
    [Google Scholar]
  92. 92. 
    Toscano J, Lewandowski H, Heazlewood BR. 2020. Cold and controlled chemical reaction dynamics. Phys. Chem. Chem. Phys. 22:9180–94
    [Google Scholar]
  93. 93. 
    Anderegg L, Cheuk LW, Bao Y, Burchesky S, Ketterle W et al. 2019. An optical tweezer array of ultracold molecules. Science 365:1156–58
    [Google Scholar]
  94. 94. 
    Cheuk LW, Anderegg L, Bao Y, Burchesky S, Yu S et al. 2020. Observation of collisions between two ultracold ground-state CaF molecules. Phys. Rev. Lett. 125:043401
    [Google Scholar]
  95. 95. 
    Hu M-G, Liu Y, Nichols MA, Zhu L, Quéméner G et al. 2020. Product-state control of ultracoldreactions via conserved nuclear spins. arXiv:2005.10820v1 [physics.atom-ph]
  96. 96. 
    Radford HE. 1961. Microwave Zeeman effect of free hydroxyl radicals. Phys. Rev. 122:114–30
    [Google Scholar]
  97. 97. 
    Carrington A, Levy DH, Miller TA. 1970. Electron resonance of gaseous diatomic molecules. Adv. Chem. Phys. 18:149–207
    [Google Scholar]
  98. 98. 
    Miller TA. 1976. The spectroscopy of simple free radicals. Annu. Rev. Phys. Chem. 27:127–52
    [Google Scholar]
  99. 99. 
    Raoult M, Guizard S, Gauyacq D, Matzkin A. 2005. Quadratic Zeeman effect in Rydberg states of NO. J. Phys. B 38:S171–90
    [Google Scholar]
  100. 100. 
    Kimura Y, Takazawa K. 2014. Landau levels of molecules: angular-momentum coupling between cyclotron motion and core rotation. Phys. Rev. A 89:023427
    [Google Scholar]
  101. 101. 
    Semeria L, Jansen P, Clausen G, Agner JA, Schmutz H, Merkt F. 2018. Molecular-beam resonance method with Zeeman-decelerated samples: application to metastable helium molecules. Phys. Rev. A 98:062518
    [Google Scholar]
  102. 102. 
    Münchow F, Bruni C, Madalinski M, Görlitz A. 2011. Two-photon photoassociation spectroscopy of heteronuclear YbRb. Phys. Chem. Chem. Phys. 13:18734–37
    [Google Scholar]
  103. 103. 
    Barbé V, Ciamei A, Pasquiou B, Reichsöllner L, Schreck F et al. 2018. Observation of Feshbach resonances between alkali and closed-shell atoms. Nat. Phys. 14:881–84
    [Google Scholar]
  104. 104. 
    Guttridge A, Frye MD, Yang BC, Hutson JM, Cornish SL. 2018. Two-photon photoassociation spectroscopy of CsYb: ground-state interaction potential and interspecies scattering lengths. Phys. Rev. A 98:022707
    [Google Scholar]
  105. 105. 
    Truppe S, Williams HJ, Hambach M, Caldwell L, Fitch NJ et al. 2017. Molecules cooled below the Doppler limit. Nat. Phys. 13:1173–76
    [Google Scholar]
  106. 106. 
    Lim J, Almond JR, Trigatzis MA, Devlin JA, Fitch NJ et al. 2018. Laser cooled YbF molecules for measuring the electron's electric dipole moment. Phys. Rev. Lett. 120:123201
    [Google Scholar]
  107. 107. 
    Sawant R, Blackmore JA, Gregory PD, Mur-Petit J, Jaksch D et al. 2020. Ultracold polar molecules as qudits. New J. Phys. 22:013027
    [Google Scholar]
  108. 108. 
    Andreev V, Ang DG, DeMille D, Doyle JM, Gabrielse G et al. (ACME Collab.) 2018. Improved limit on the electric dipole moment of the electron. Nature 562:355–60
    [Google Scholar]
  109. 109. 
    Cairncross WB, Gresh DN, Grau M, Cossel KC, Roussy TS et al. 2017. Precision measurement of the electron's electric dipole moment using trapped molecular ions. Phys. Rev. Lett. 119:153001
    [Google Scholar]
  110. 110. 
    Augenbraun BL, Lasner ZD, Frenett A, Sawaoka H, Miller C et al. 2020. Laser-cooled polyatomic molecules for improved electron electric dipole moment searches. New J. Phys. 22:022003
    [Google Scholar]
  111. 111. 
    Jadbabaie A, Pilgram NH, Klos J, Kotochigova S, Hutzler NR. 2020. Enhanced molecular yield from a cryogenic buffer gas beam source via excited state chemistry. New J. Phys. 22:022002
    [Google Scholar]
  112. 112. 
    Fukuda Y, Hayakawa T, Ichihara E, Inoue K, Ishihara K et al. (Super-Kamiokande Collab.) 1998. Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81:1562–67
    [Google Scholar]
  113. 113. 
    Ahmad QR, Allen RC, Andersen TC, Anglin JD, Barton JC et al. (SNO Collab.) 2002. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Phys. Rev. Lett. 89:011301
    [Google Scholar]
  114. 114. 
    Aker M, Altenmüller K, Arenz M, Babutzka M, Barrett J et al. (KATRIN Collab.) 2019. Improved upper limit on the neutrino mass from a direct kinematic method by KATRIN. Phys. Rev. Lett. 123:221802
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-090419-053842
Loading
/content/journals/10.1146/annurev-physchem-090419-053842
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error