Skip to main content
Log in

Hot deformation behavior and microstructure evolution of an Fe–30Cr–2Mo ultra-pure super ferritic stainless steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The hot deformation behavior and microstructure evolution of an Fe–30Cr–2Mo ultra-pure super ferritic stainless steel were investigated at the temperature range of 950–1150 °C and strain rate varying from 0.01 to 10 s−1. A strain compensated constitutive equation based on the Arrhenius-type model was established to predict the flow stress. The hot processing map based on the dynamic materials model was achieved to identify the optimum processing parameters. In addition, the features of microstructure evolution combined with the processing map were systematically investigated. The experimental results revealed that the flow stress increased with decreasing deformation temperature or increasing strain rate. Dynamic recovery was confirmed to be the predominant softening mechanism. The values of flow stress predicted by the strain compensated constitutive equation agreed well with the experimental values. The extent of dynamic recrystallization and recrystallized grain size increased with increasing deformation temperature or decreasing strain rate, and the continuous dynamic recrystallization was attributed to be the predominant mechanism of recrystallization during hot deformation. The optimum hot working parameters were determined to be the deformation temperature of 1070–1150 °C and strain rate of 0.1–1 s−1 with a peak power dissipation efficiency of 42%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S. Kumar, R.K. Vijayavergia, S. Chakraborty, Tool Alloy Steel (1995) 389–396.

  2. L. Ma, S. Hu, J. Shen, J. Han, Mater. Lett. 184 (2016) 204–207.

    Article  Google Scholar 

  3. F. Gao, Z.Y. Liu, H.T. Liu, G.D. Wang, Mater. Charact. 75 (2013) 93–100.

    Article  Google Scholar 

  4. L.S. Ying, Introduction to stainless steel, China Science and Technology Press, Beijing, China, 2007.

    Google Scholar 

  5. T.J. Nichol, A. Datta, G. Aggen, Metall. Trans. A 11 (1980) 573–585.

    Article  Google Scholar 

  6. K. Premachandra, M.B. Cartie, R.H. Eric, Mater. Sci. Technol. 8 (1992) 437–442.

    Article  Google Scholar 

  7. F. Gao, F.X. Yu, H.T. Liu, Z.Y. Liu, J. Iron Steel Res. Int. 22 (2015) 827–836.

    Article  Google Scholar 

  8. S.V. Mehtonen, L.P. Karjalainen, D.A. Porter, Mater. Sci. Eng. A 607 (2014) 44–52.

    Article  Google Scholar 

  9. X.Y. Qin, D.W. Huang, X.J. Yan, X.Y. Zhang, M.J. Qi, S. Yue, J. Alloy. Compd. 770 (2019) 507–516.

    Article  Google Scholar 

  10. Y.S. Hao, W.C. Liu, Z.Y. Liu, Acta Metall. Sin. (Engl. Lett.) 31 (2018) 401–414.

  11. L. Meng, M.H. Wang, X. Liu, F.L. Wang, Appl. Phys. A 122 (2016) 387.

    Article  Google Scholar 

  12. H. Shin, J.B. Kim, J. Eng. Mater. Technol. 132 (2010) 021009.

    Article  Google Scholar 

  13. A. Rusinek, J.A. Rodriguez-Martinez, A. Arias, Int. J. Mech. Sci. 52 (2010) 120–135.

    Article  Google Scholar 

  14. Y.C. Huang, Y.C. Lin, J. Deng, G. Liu, M.S. Chen, Mater. Des. 53 (2014) 349–356.

    Article  Google Scholar 

  15. Y.C. Lin, M.S. Chen, J. Zhong, Comput. Mater. Sci. 42 (2008) 470–477.

    Article  Google Scholar 

  16. Z.Y. Ding, D. Zhang, Q.D. Hu, L. Zeng, J.G. Li, J. Iron Steel Res. Int. 24 (2017) 916–924.

    Article  Google Scholar 

  17. E.X. Pu, H. Feng, M. Lin, W.J. Zheng, H. Dong, Z.G. Song, J. Iron Steel Res. Int. 23 (2016) 178–184.

    Article  Google Scholar 

  18. L.X. Ma, M. Wan, W.D. Li, J. Shao, X.P. Bai, J. Alloy. Compd. 808 (2019) 151759.

    Article  Google Scholar 

  19. L. Lu, L.G. Hou, H. Cui, J.F. Huang, Y.A. Zhang, J.S. Zhang, J. Iron Steel Res. Int. 23 (2016) 501–508.

    Article  Google Scholar 

  20. Z.X. Shi, X.F. Yan, C.H. Duan, J.G. Song, M.H. Zhao, J. Wang, J. Iron Steel Res. Int. 24 (2017) 625–633.

    Article  Google Scholar 

  21. A. Momeni, K. Dehghani, Mater. Sci. Eng. A 527 (2010) 5467–5473.

    Article  Google Scholar 

  22. H. Jiang, J. Dong, M. Zhang, L. Zheng, Z. Yao, J. Alloy. Compd. 647 (2015) 338–350.

    Article  Google Scholar 

  23. L.W. Zhong, W.L. Gao, Z.H. Feng, Z. Lu, C.C. Zhu, J. Mater. Sci. Technol. 35 (2019) 2409–2421.

    Article  Google Scholar 

  24. S.V. Mehtonen, L.P. Karjalainen, D.A. Porter, Mater. Sci. Eng. A 571 (2013) 1–12.

    Article  Google Scholar 

  25. Y. Funakawa, T. Ujiro, ISIJ Int. 50 (2010) 1488–1495.

    Article  Google Scholar 

  26. C. Zener, J.H. Hollomon, J. Appl. Phys. 15 (1944) 22–32.

    Article  Google Scholar 

  27. Y.H. Xiao, C. Guo, X.Y. Guo, Mater. Sci. Eng. A 528 (2011) 6510–6518.

    Article  Google Scholar 

  28. H. Mirzadeh, J.M. Cabrera, J.M. Prado, A. Najafizadeh, Mater. Sci. Eng. A 528 (2011) 3876–3882.

    Article  Google Scholar 

  29. Y.B. Tan, Y.H. Ma, F. Zhao, J. Alloy. Compd. 741 (2018) 85–96.

    Article  Google Scholar 

  30. D. Samantaray, C. Phaniraj, S. Mandal, A.K. Bhaduri, Mater. Sci. Eng. A 528 (2011) 1071–1077.

    Article  Google Scholar 

  31. A. Marandi, A. Zarei-Hanzaki, N. Haghdadi, M. Eskandari, Mater. Sci. Eng. A 554 (2012) 72–78.

    Article  Google Scholar 

  32. L. Briottet, J.J. Jonas, F. Montheillet, Acta Mater. 44 (1996) 1665–1672.

    Article  Google Scholar 

  33. E. Pu, W. Zheng, J. Xiang, Z. Song, J. Li, Mater. Sci. Eng. A 598 (2014) 174–182.

    Article  Google Scholar 

  34. D. Sun, M. Li, Y. Zou, R. Yang, F. Li, Chin. Sci. Bull. 42 (1997) 1211–1215.

    Article  Google Scholar 

  35. H.L. Liu, M.Y. Ma, L.L. Liu, L.L. Wei, L.Q. Chen, J. Iron Steel Res. Int. 26 (2019) 425–434.

  36. P.W. Li, H.Z. Li, L. Huang, X.P. Liang, Z.X. Zhu, Trans. Nonferrous Met. Soc. China 27 (2017) 1677–1688.

    Article  Google Scholar 

  37. Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark, D.R. Barker, Metall. Trans. A 15 (1984) 1883–1892.

    Article  Google Scholar 

  38. K.A. Babu, S. Mandal, A. Kumar, C.N. Athreya, B. de Boer, V.S. Sarma, Mater. Sci. Eng. A 664 (2016) 177–187.

    Article  Google Scholar 

  39. Z. Shi, X. Yan, C. Duan, J. Alloy. Compd. 652 (2015) 30–38.

    Article  Google Scholar 

  40. V.V. Balasubrahmanyam, Y.V.R.K. Prasad, Mater. Sci. Eng. A 336 (2002) 150–158.

    Article  Google Scholar 

  41. S. Zeng, A. Zhao, H. Jiang, Y. Ren, J. Alloy. Compd. 698 (2017) 786–793.

    Article  Google Scholar 

  42. X.N. Peng, H.Z. Guo, Z.F. Shi, C. Qin, Z.L. Zhao, Z.K. Yao, Mater. Sci. Eng. A 605 (2014) 80–88.

    Article  Google Scholar 

  43. F.T. Kong, N. Cui, Y.Y. Chen, X.P. Wang, N.N. Xiong, Intermetallics 55 (2014) 66–72.

    Article  Google Scholar 

  44. Z.P. Wan, L.X. Hu, Y. Sun, T. Wang, Z. Li, J. Alloy. Compd. 769 (2018) 367–375.

    Article  Google Scholar 

  45. C. Zhang, L. Zhang, W. Shen, Q. Xu, Y. Cui, J. Alloy. Compd. 728 (2017) 1269–1278.

    Article  Google Scholar 

  46. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, J.J. Jonas, Prog. Mater. Sci. 60 (2014) 130–207.

    Article  Google Scholar 

  47. S. Gourdet, F. Montheillet, Mater. Sci. Eng. A 283 (2000) 274–288.

    Article  Google Scholar 

  48. M.E. Kassner, S.R. Barrabes, Mater. Sci. Eng. A 410–411 (2005) 152–155.

    Article  Google Scholar 

  49. K. Huang, R.E. Logé, Mater. Des. 111 (2016) 548–574.

    Article  Google Scholar 

  50. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, L.T. Li, J. Alloy. Compd. 640 (2015) 101–113.

    Article  Google Scholar 

  51. X.Q. Yin, C.H. Park, Y.F. Li, W.J. Ye, Y.T. Zuo, S.W. Lee, J.T. Yeom, X.J. Mi, J. Alloy. Compd. 693 (2017) 426–431.

    Article  Google Scholar 

  52. Q. Zang, H. Yu, Y.S. Lee, M.S. Kim, H.W. Kim, J. Alloy. Compd. 763 (2018) 25–33.

    Article  Google Scholar 

  53. F. Gao, B. Song, Y. Xu, K. Xia, Metall. Mater. Trans. A 31 (2000) 21–27.

    Article  Google Scholar 

  54. Q. Yang, Z. Deng, Z. Zhang, Q. Liu, Z. Jia, G. Huang, Mater. Sci. Eng. A 662 (2016) 204–213.

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Liaoning Province Programs of Science and Technology Development (No. 2019JH2/10100009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-kui Ning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Yy., Ning, Lk., Xin, Tz. et al. Hot deformation behavior and microstructure evolution of an Fe–30Cr–2Mo ultra-pure super ferritic stainless steel. J. Iron Steel Res. Int. 28, 1291–1304 (2021). https://doi.org/10.1007/s42243-021-00584-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-021-00584-4

Keywords

Navigation