Skip to main content

Advertisement

Log in

Cosmology with variable G and nonlinear electrodynamics

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

In a bid to resolve lingering problems in cosmology, more focus is being tilted towards cosmological models in which physical constants of nature are not necessarily real constants but vary with cosmic time. In this paper, we study a cosmological model in nonlinear electrodynamics with Newton’s gravitational constant G, which is not a constant but varies in terms of a power law of the scale factor of the universe. Hence, the evolution of the scale factor a(t) is studied in this model, which depends on a fine-tuning term of nonlinear electrodynamics, \(\alpha \). Finally, we verify the stability of the model using the speed of sound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. S Capoziello and V Faraoni Beyond Einstein Gravity: A Survey of Gravitational Theories for Cosmology and Astrophysics Springer Science+Business Media B V New York, 2011).

  2. V A De Lorenci, R Klippert, M Novello and J M Salim Phys. Rev. D 65 063501 (2002).

    Article  ADS  Google Scholar 

  3. D N Vollick Phys. Rev. D 78 063524 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  4. S I Kruglov Phys. Rev. D 92 123523 (2015).

    Article  ADS  MathSciNet  Google Scholar 

  5. A Övgün Eur. Phys. J. C 77 105 (2017).

    Article  ADS  Google Scholar 

  6. A  Övgün, G  Leon, J  Magana and K  Jusufi Eur. Phys. J. C 78 462 (2018).

    Article  ADS  Google Scholar 

  7. G  Otalora, A  Övgün, J  Saavedra and N  Videla JCAP 06 003 (2018).

    Article  ADS  Google Scholar 

  8. P  Sarkar, P  K  Das and G  C  Samanta [arXiv:2005.05568 [hep-ph]].

  9. A  Golovnev, V  Mukhanov and V Vanchurin JCAP 0806 009 (2008).

    Article  ADS  Google Scholar 

  10. M Novello, et al. Phys.Rev. D 69 127301 (2004).

    Article  ADS  Google Scholar 

  11. M Novello, E Goulart, J M Salim and S E Perez Bergliaffa Class. Quant. Grav. 24 3021 (2007).

    Article  ADS  Google Scholar 

  12. S I Kruglov Int. J. Mod. Phys. A 32 1750071 (2017).

    Article  ADS  Google Scholar 

  13. S I Kruglov Annals Phys. 353 299 (2014).

    Google Scholar 

  14. S I Kruglov Int. J. Mod. Phys. D 25 1640002 (2016).

    Article  ADS  Google Scholar 

  15. S I Kruglov Int. J. Mod. Phys. A 31 1650058 (2016).

    Article  ADS  Google Scholar 

  16. S Kruglov Eur. Phys. J. Plus 135 370 (2020).

    Article  Google Scholar 

  17. M Sharif and S Mumtaz Eur. Phys. J. C 77 136 (2017).

    Article  ADS  Google Scholar 

  18. L Campanelli, P Cea, G L Fogli and L Tedesco Phys. Rev. D 77 043001 (2008).

    Article  ADS  Google Scholar 

  19. R Garcia-Salcedo et al. Int. J. Mod. Phys. A 15 4341 (2000).

    ADS  Google Scholar 

  20. N J Poplawski Gen. Rel. Grav. 44, 1007 (2012).

    Article  ADS  Google Scholar 

  21. N Poplawski Astrophys. J. 832 96 2016).

    Article  ADS  Google Scholar 

  22. A Öztaş, E Dil and M Smith Mon. Not. Roy. Astron. Soc. 476 451 (2018).

    Article  ADS  Google Scholar 

  23. E Dil, A M Oztas and E Dil Astron. Comput. 28 100295 (2019).

    Article  Google Scholar 

  24. F V Mukhanov et al. Phys. Rev. Lett. 68 1969 (1992).

    Article  ADS  MathSciNet  Google Scholar 

  25. E N Saridakis and M Tsoukalas Phys. Rev. D 93 124032 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  26. H Sheikhahmadi, E N Saridakis, A Aghamohammadi and K Saaidi JCAP 10 021 (2016).

    Article  ADS  Google Scholar 

  27. C S Camara et al. Phys.Rev. D 69 123504 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  28. R Durrer and A Neronov Astron Astrophys Rev 21 62 (2013).

    Article  ADS  Google Scholar 

  29. K E Kunze Plasma Phys. Control. Fusion 55 124026 (2013).

    Article  ADS  Google Scholar 

  30. H Azri and D Demir Phys. Rev. D 95 124007 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  31. H Azri and D Demir Phys. Rev. D 97 044025 (2018).

    Article  ADS  Google Scholar 

  32. H Azri and A Bounames Int. J. Mod. Phys. D 26 1750060 (2017).

    Article  ADS  Google Scholar 

  33. A Hernandez-Almada, M A Garcia-Aspeitia, J Magana and V Motta Phys. Rev. D 101 063516 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  34. M A Garcia-Aspeitia, C Martinez-Robles, A Hernandez-Almada, J Magana and V Motta Phys. Rev. D 99 123525 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  35. J A Vazquez, L E Padilla and T Matos Revista Mexicana de Física E 2020 [arXiv:1810.09934 [astro-ph.CO]].

  36. O Sert Mod. Phys. Lett. A 35 2050037 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  37. M Adak, O Akarsu, T Dereli and O Sert JCAP 11 026 (2017).

    Article  ADS  Google Scholar 

  38. O Okcu, C Corda and E Aydiner EPL 129 50002 (2020).

    Article  ADS  Google Scholar 

  39. M Cruz, F Izaurieta and S Lepe Eur. Phys. J. C 80 559 (2020).

    Article  ADS  Google Scholar 

  40. M Cruz and S Lepe Class. Quant. Grav. 35 155013 (2018).

    Article  ADS  Google Scholar 

  41. M Cruz, N Cruz and S Lepe Phys. Rev. D 96 124020 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  42. R Cordero, M Cruz, A Molgado and E Rojas Gen. Rel. Grav. 46 1761 (2014).

    Article  ADS  Google Scholar 

  43. E Elizalde et al. Phys. Lett. B 574 1 (2003).

    Article  ADS  Google Scholar 

  44. C Quercellini , M Bruni, A Balbi, D Pietrobon Phys. Rev. D 78 063527 (2008).

    Article  ADS  Google Scholar 

  45. M Born and L Infeld Proc. Roy. Soc. Lond. A A144 425 (1934).

    ADS  Google Scholar 

  46. J D Barrow and J Magueijo Phys. Lett. B 443 104 (1998).

    Article  ADS  Google Scholar 

  47. A Albrecht and J Magueijo Phys. Rev. D 59 043516 (1999).

    Article  ADS  Google Scholar 

  48. A G Cohen, D B Kaplan and A E Nelson Phys. Rev. Lett. 82 4971 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  49. J Moffat Eur. Phys. J. C 76 130 (2016).

    Article  ADS  Google Scholar 

  50. K Leszczynska Universe 3 46 (2017).

    Google Scholar 

  51. C Camara, R Nascimento, J Carvalho and M De Garcia Maia Int. J. Mod. Phys. D 16 433 (2007).

    Article  ADS  Google Scholar 

  52. L Kantha Adv. Astron. 2016 9743970 (2016).

    Article  ADS  Google Scholar 

  53. S Nesseris L Perivolaropoulos Phys.Rev. D 73 103511 (2006).

    Article  ADS  Google Scholar 

  54. H Weyl Natturwissenschaften 22 145 (1934).

    Article  ADS  Google Scholar 

  55. P A M Dirac Proc. R. Soc. A 165 199 (1938).

    ADS  Google Scholar 

  56. A K Singha and U Debnath Int. J. Mod. Phys. D 16 117 (2007).

    Article  ADS  Google Scholar 

  57. M S Singh and S S Singh Turk J Phys 42 198 (2018).

    Google Scholar 

  58. R Dungan and H B Prosper [arXiv:0909.5416 [astro-ph.CO]].

  59. M Malekjani, J Lu, N Nazari-Pooya, L Xu, D Mohammad-Zadeh Jassur and M Honari-Jafarpour Astrophys. Space Sci. 360 24 (2015).

    Article  ADS  Google Scholar 

  60. A Sheykhi Phys. Scripta 85 045901 (2012).

    Article  ADS  Google Scholar 

  61. J Lu, L Xu, H Tan and S Gao Phys. Rev. D 89 063526 (2014).

    Article  ADS  Google Scholar 

  62. M Sharif and A Jawad Eur. Phys. J. C 72 1901 (2012).

    Article  ADS  Google Scholar 

  63. J Lu, E N Saridakis, M R Setare and L Xu JCAP 1003, 031 (2010).

    Article  ADS  Google Scholar 

  64. A Sheykhi and M R Setare Int. J. Theor. Phys. 49 2777 (2010).

    Article  Google Scholar 

  65. B Borah and M Ansari Int. J. Theor. Phys. 53 1217 (2014).

    Article  Google Scholar 

  66. R Tolman, P Ehrenfest Phys.Rev. 36 1791 (1930).

    Article  ADS  Google Scholar 

  67. R Garcia-Salcedo, T Gonzalez, I Quiros Phys.Rev. D 89 084047 (2014).

    Article  ADS  Google Scholar 

  68. S M Carroll [arXiv:gr-qc/9712019 [gr-qc]].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Övgün.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, G.W., Övgün, A. Cosmology with variable G and nonlinear electrodynamics. Indian J Phys 96, 1861–1866 (2022). https://doi.org/10.1007/s12648-021-02110-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-021-02110-4

Keywords

Navigation