Skip to main content
Log in

Qualitative Analysis for a Degenerate Kirchhoff-Type Diffusion Equation Involving the Fractional p-Laplacian

  • Published:
Applied Mathematics & Optimization Submit manuscript

Abstract

This paper is devoted to study an anomalous diffusion model of Kirchhoff type driven by a nonlocal integro-differential operator. The properties of solutions, such as vacuum isolating phenomena, global existence, extinction, exponentially decay, exponentially growth, and finite time blow-up were studied by potential well method and energy estimate method. The results of this paper extend and complete the recent studies on this model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Pucci, P., Xiang, M.Q., Zhang, B.L.: A diffusion problem of Kirchhoff type involving the nonlocal fractional p-Laplacian. Discret. Contin. Dyn. Syst. Ser. A 37(7), 4035–4051 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Applebaum, D.: Lévy processes-from probability to finance quantum groups. Not. Am. Math. Soc. 51, 1336–1347 (2004)

    MATH  Google Scholar 

  3. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Metzler, R., Klafter, J.: The restaurant at the random walk: recent developments in the description of anomalous transport by fractional dynamics. J. Phys. A: Math. Gen. 37, 161–208 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Autuori, G., Fiscella, A., Pucci, P.: Stationary Kirchhoff problem involving a fractional elliptic operator and a critical nonlinearity. Nonlinear Anal.: Theor. Methods Appl. 125, 699–714 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Castro, A., Kuusi, T., Palatucci, G.: Local behavior of fractional \(p\)-minimizers. Ann. I. H. Poincaré-AN 33, 1279–1299 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L.: Non-local equations, drifts and games. In: Nonlinear Partial Differential Equations, vol. 7, pp. 37–52. Abel Symposia (2012)

  8. Ding, H., Zhou, J.: Local existence, global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem. Nonlinearity 33(3), 1046–1063 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ding, H., Zhou, J.: Global existence and blow-up of solutions to a nonlocal Kirchhoff diffusion problem. Nonlinearity 33(11), 6099–6133 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dipierro, S., Palatucci, G., Valdinoci, E.: Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Le Matematiche 68(1), 201–216 (2012)

    MATH  Google Scholar 

  11. Felmer, P., Quaas, A., Tan, J.G.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. 142(6), 1237–1262 (2012)

    Article  MATH  Google Scholar 

  12. Fiscella, A., Pucci, P.: On certain nonlocal Hardy-Sobolev critical elliptic Dirichlet problems. Adv. Differ. Equ. 21(5/6), 571–599 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Fiscella, A., Pucci, P.: \(p\)-Fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal.: Real World Appl. 35, 350–378 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal.: Theor. Methods Appl. 94(1), 156–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiang, R.H., Zhou, J.: Blow-up and global existence of solutions to a parabolic equation associated with the fraction \(p\)-Laplacian. Commun. Pure Appl. Anal. 18(3), 1205–1226 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xiang, M.Q., Bisci, G.M., Tian, G.H., Zhang, B.L.: Infinitely many solutions for the stationary Kirchhoff problems involving the fractional \(p\)-laplacian. Nonlinearity 29(2), 316–341 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in \({\mathbb{R}}^{n}\) involving nonlocal operators. Revista Mate. Iberoamericana 32(1), 1–22 (2016)

    Article  MATH  Google Scholar 

  18. Pucci, P., Xiang, M.Q., Zhang, B.L.: Multiple solutions for nonhomogenous Schrodinger-Kirchhoff type equations involving the fractional \(p\)-Laplacian in \({\mathbb{R}}^{N}\). Calc. Var. Partial Diff. Equ. 54, 2785–2806 (2015)

    Article  MATH  Google Scholar 

  19. Pucci, P., Xiang, M.Q., Zhang, B.L.: Existence and multiplicity of entire solutions for fractional \(p\)-Kirchhoff equations. Adv. Nonlinear Anal. 5, 27–55 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Secchi, S.: Ground state solutions for nonlinear fractional Schrödinger equations in \({\mathbb{R}}^{n}\). J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Xiang, M.Q., Zhang, B.L., Ferrara, M.: Existence of solutions for Kirchhoff type problem involving the non-local fractional \(p\)-Laplacian. J. Math. Anal. Appl. 424(2), 1021–1041 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Xiang, M.Q., Zhang, B.L., Rădulescu, V.D.: Existence of solutions for a bi-nonlocal fractional \(p\)-Kirchhoff type problem. Comput. Math. Appl. 71(1), 255–266 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Xiang, M.Q., Zhang, B.L.: Existence of solutions for perturbed fractional \(p\)-Laplacian equations. J. Differ. Equ. 260, 1392–1413 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Pan, N., Pucci, P., Xu, R.Z., Zhang, B.L.: Degenerate Kirchhoff-type wave problems involving the fractional Laplacian with nonlinear damping and source terms. J. Evol. Equ. 19(3), 615–643 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pan, N., Pucci, P., Zhang, B.L.: Degenerate Kirchhoff-type hyperbolic problems involving the fractional Laplacian. J. Evol. Equ. 18(2), 385–409 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pucci, P., Saldi, S.: Asymptotic stability for nonlinear damped Kirchhoff systems involving the fractional p-Laplacian operator. J. Differ. Equ. 263(5), 2375–2418 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, J.J., Pucci, P., Zhang, Q.H.: Wave breaking analysis for the periodic rotation-two-component Camassa-Holm system. Nonlinear Anal. 187, 214–228 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fife, P.: Some nonclassical trends in parabolic and parabolic-like evolutions. In: Trends in Nonlinear Analysis, pp. 153–191. Springer, Berlin (2003)

  29. Szymańska, Z., Rodrigo, C., Lachowicz, M., Chaplain, M.: Mathematical modelling of cancer invasion of tissue: the role and effect of nonlocal interactions. Math. Models Methods Appl. Sci. 19(02), 257–281 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  30. Green, J., Waters, S., Whiteley, J., Keshet, L., Shakesheff, K., Byrne, H.: Non-local models for the formation of hepatocyte-stellate cell aggregates. J. Theor. Biol. 267(1), 106–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Caponi, M., Pucci, P.: Existence theorems for entire solutions of stationary Kirchhoff fractional \(p\)-laplacian equations. Ann. Mate. Pura Appl. 195(6), 1–31 (2016)

    MathSciNet  MATH  Google Scholar 

  32. Gal, C.G., Warm, M.: On some degenerate non-local parabolic equation associated with the fractional \(p\)-Laplacian. Dyn. Partial Differ. Equ. 14(1), 47–77 (2017)

    Article  MathSciNet  Google Scholar 

  33. Gobbino, M.: Quasilinear degenerate parabolic equations of Kirchhoff type. Math. Methods Appl. Sci. 22(5), 375–388 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  34. Li, Q.W., Han, Y.Z.: Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy. Comput. Math. Appl. 75(9), 3283–3297 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  35. Autuori, G., Pucci, P., Salvatori, M.C.: Global nonexistence for nonlinear Kirchhoff systems. Arch. Ration. Mech. Anal. 196(2), 489–516 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Pan, N., Zhang, B.L., Cao, J.: Degenerate Kirchhoff-type diffusion problems involving the fractional p-laplacian. Nonlinear Anal.: Real World Appl. 37, 56–70 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Sattinger, D.H.: On global solution of nonlinear hyperbolic equations. Arch. Ration. Mech. Anal. 30(2), 148–172 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  38. Chen, H., Liu, G.W.: Global existence and nonexistence for semilinear parabolic equations with conical degeneration. J. Pseudo-Differ. Oper. Appl. 3(3), 329–349 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Chen, H., Liu, N.: Asymptotic stability and blow-up of solutions for semi-linear edge-degenerate parabolic equations with singular potentials. Discret. Contin. Dyn. Syst. Ser. A 36(2), 661–682 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  40. Xu, R.Z.: Initial boundary value problem for semilinear hyperbolic equations and parabolic equations with critical initial data. Q. Appl. Math. 68(3), 459–468 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  41. Zhou, J.: A multi-dimension blow-up problem to a porous medium diffusion equation with special medium void. Appl. Math. Lett. 30(4), 6–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Payne, L.E., Sattinger, D.H.: Saddle points and instability of nonlinear hyperbolic equations. Isr. J. Math. 22(3–4), 273–303 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  43. Liu, Y.C., Zhao, J.S.: On potential wells and applications to semilinear hyperbolic equations and parabolic equations. Nonlinear Anal.: Theor. Methods Appl. 64(12), 2665–2687 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Liu, Y.C.: On potential wells and vacuum isolating of solutions for semilinear wave equations. J. Differ. Equ. 192(1), 155–169 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lin, Q., Wu, Y.H., Loxton, R.: On the Cauchy problem for a generalized Boussinesq equation. J. Math. Anal. Appl. 353(1), 186–195 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Liu, Y.C., Zhao, J.S.: Nonlinear parabolic equations with critical initial conditions \(J(u_0)=d\) or \(I(u_0)=0\). Nonlinear Anal.: Theor. Methods Appl. 58(7C8), 873–883 (2004)

    MATH  Google Scholar 

  47. Liu, Y.C., Xu, R.Z.: A class of fourth order wave equations with dissipative and nonlinear strain terms. J. Differ. Equ. 244(1), 200–228 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Liu, Y.C., Xu, R.Z.: Global existence and blow up of solutions for Cauchy problem of generalized Boussinesq equation. Phys. D: Nonlinear Phenom. 237(6), 721–731 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  49. Liu, Y.C., Xu, R.Z.: Potential well method for Cauchy problem of generalized double dispersion equations. J. Math. Anal. Appl. 338(2), 1169–1187 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  50. Xu, R.Z., Liu, Y.C., Liu, B.W.: The Cauchy problem for a class of the multidimensional Boussinesq-type equation. Nonlinear Anal.: Theor. Methods Appl. 74(6), 2425–2437 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  51. Zhang, H.W., Hu, Q.Y.: Global existence and nonexistence of solution for Cauchy problem of two-dimensional generalized Boussinesq equations. J. Math. Anal. Appl. 422(2), 1116–1130 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Choi, W., Kim, S., Lee, K.A.: Asymptotic behavior of solutions for nonlinear elliptic problems with the fractional Laplacian. J. Funct. Anal. 266(11), 6531–6598 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. Nezza, E.D., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136(5), 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Servadei, R., Rădulescu, V.D., Bisci, G.: Variational Methods for Nonlocal Fractional Problems. Cambridge University Press, Cambridge (2010)

    MATH  Google Scholar 

  55. Tsutsumi, M.: Existence and nonesistence of global solutions of nonlinear parabolic equations. Publ. Res. Insti. Math. Sci. 8, 211–229 (1972/1973)

  56. Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, New York (2010)

    Google Scholar 

  57. Gao, W.J., Han, Y.Z.: Blow-up of a nonlocal semilinear parabolic equation with positive initial energy. Appl. Math. Lett. 24(5), 784–788 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. Jian, Y.H., Yang, Z.D.: Bounds for the blow-up time and blow-up rate estimates for nonlinear parabolic equations with Dirichlet or Neumann boundary conditions. Br. J. Math. Comput. Sci. 12(2), 1–12 (2016)

    Article  Google Scholar 

  59. Zhou, J.: Blow-up for a thin-film equation with positive initial energy. J. Math. Anal. Appl. 446(1), 1133–1138 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  60. Gazzola, F., Weth, T.: Finite time blow-up and global solutions for semilinear parabolic equations with initial data at high energy level. Differ. Integral Equ. 18(9), 961–990 (2005)

    MathSciNet  MATH  Google Scholar 

  61. Xu, G.Y., Zhou, J.: Global existence and blow-up for a fourth order parabolic equation involving the Hessian. Nonlinear Differ. Equ. Appl. NoDEA 24, 41 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  62. Xu, R.Z., Su, J.: Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations. J. Funct. Anal. 264(12), 2732–2763 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

NSFC 11201380.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally in this article. They have all read and approved the final manuscript.

Corresponding author

Correspondence to Jun Zhou.

Ethics declarations

Conflicts of interest/Competing interests

The authors declare that there is no conflict of interests regarding the publication of this manuscript. The authors declare that they have no competing interests.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, G., Zhou, J. Qualitative Analysis for a Degenerate Kirchhoff-Type Diffusion Equation Involving the Fractional p-Laplacian. Appl Math Optim 84 (Suppl 1), 465–508 (2021). https://doi.org/10.1007/s00245-021-09776-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00245-021-09776-6

Keywords

Mathematics Subject Classification

Navigation