Skip to main content
Log in

Chemical Characteristics of Cloud Water and Sulfate Production Under Excess Hydrogen Peroxide in a High Mountainous Region of Central Japan

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Over the last two decades, atmospheric sulfur dioxide (SO2) concentrations have decreased in air-polluted regions. However, this decrease was accompanied by a rise in cloud water acidity (pH), which remains below 5. With this change, gas-phase hydrogen peroxide (H2O2) exceeded SO2 in most of these regions. These conditions where SO2 < H2O2 occurred at Mt. Norikura (2770 m.a.s.l.) during the 1900s. Therefore, to reveal the aqueous-phase oxidation of SO2 by H2O2, the present study investigated the inorganic and organic major ions and Se concentrations in cloud water in addition to aerosols and concentrations of gas species including O3, NOx, and SO2 collected in cloud events at Mt. Norikura during the summer of 1999. Backward air trajectory analyses indicated that the (NH4)2SO4 and trace (NH4)HSO4 aerosols originated from industrial and metropolitan areas in southwest Japan. The cloud water pH was between 3.6 and 4.4. The aqueous-phase SO42−/NO3 ratio (1.2 ± 0.6) was lower than that of the early 1990s (2.2) and 1960s (> 10) in our observation site, which was due to power plant restrictions in Japan since the 1970s. The ion species concentrations in cloud water indicated that cloud acidification resulted from dissolution of gaseous HNO3 and SO2, whereas gaseous hydrochloric acid and organic acid had a minor contribution to the acidification. Significant losses of Cl and Mg2+ were observed in some of the cloud water. The excess value of non-sea-salt sulfate (nss-SO42−) over NH4+ in cloud water implies the in-cloud oxidation of gaseous SO2 to aqueous SO42−. A Se tracer technique was used to conduct in-situ measurements of in-cloud SO42− production. The results showed that the in-cloud production varied in a range between 7 ± 2 and 41 ± 14%. This temporal variation might be due to ambient SO2 concentrations based on Henry’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4.
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Adzuhata, T., Okamura, T., Inotsume, J., Kikuchi, R., Ozeki, T., Kajikawa, M., & Ogawa, N. (2001). Chemical characterization of acid fog and rain in Northern Japan using back trajectory and oblique rotational factor analysis. Water, Air, and Soil Pollution, 130, 337–342.

  • Aikawa, M., Hiraki, T., & Tamaki, M. (2005). Characteristics in concentration of chemical species in ambient air based on three-year monitoring by filter pack method. Water, Air, and Soil Pollution, 161, 335–352.

  • Aikawa, M., Hiraki, T., Suzuki, M., Tamaki, M., & Kasahara, M. (2007). Separate chemical characterizations of fog water, aerosol, and gas before, during, and after fog events near an industrialized area in Japan. Atmospheric Environment, 41, 1950–1959.

  • Balasubramanian, R., & Husain, L. (1997). Observations of gas-phase hydrogen peroxide at an elevated rural site in New York. Journal of Geophysical Research, 102, 21209–21220.

  • Burkhard, E. G., Ghauri, B. M., Dutkiewicz, V. A., & Husain, L. (1995). A multielement tracer technique for the determination of SO2 oxidation in clouds. Journal of Geophysical Research: Atmospheres, 100, 26051–26059.

  • Chameides, W. (1984). The photochemistry of a remote marine stratiform cloud. Journal of Geophysical Research, 89, 4739–4755.

  • Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley Jr., J. A., Hansen, J. E., & Hofmann, D. J. (1992). Climate forcing by anthropogenic aerosols. Science, 255, 423–430.

  • Chin, M., Jacob, D. J., Gardner, G. M., Foreman-Fowler, M. S., Spiro, P. A. (1996). A global three-dimensional model of tropospheric sulfate. Journal of Geophysical Research, 101, 18667–18690.

  • Donaldson, D. J. (1999). Adsorption of atmospheric gases at the air-water interface. I. NH3. The Journal of Physical Chemistry A, 103, 62–70.

  • Draxler, R. R., Rolph, G. D., 2009. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website. NOAA Air Resources Laboratory, Silver Spring, MD. http://ready.arl.noaa.gov/HYSPLIT.php

  • Dutkiewicz, V. A., Burkhard, E. G., & Husain, L. (1995). Availability of H2O2 for oxidation of SO2 in clouds in the Northeastern United States. Atmospheric Environment, 29, 3281–3292.

  • Galloway, J. N., & Likens, G. E. (1981). Acid precipitation: the importance of nitric acid. Atmospheric Environment, 15, 1081–1085.

  • Ghauri, B. M., Mirza, M. I., Richter, R., Dutkiewicz, V. A., Rusheed, A., Khan, A. R., & Husain, L. (2001). Composition of aerosols and cloud water at a remote mountain site (2.8 kms) in Pakistan. Chemosphere – Global Change Science, 3, 51–63.

  • Guo, J., Wang, Y., Shen, X., Wang, Z., Lee, T., Wang, X., Li, P., Sun, M., Collett Jr., J. L., Wang, W., & Wang, T. (2012). Characterization of cloud water chemistry at Mountain Tai, China: Seasonal variation, anthropogenic impact, and cloud processing. Atmospheric Environment, 60, 467–476.

  • Hobbs, P. V. (2000). Introduction to Atmospheric Chemistry (p. 262). Cambridge, MA: Cambridge University Press.

  • Husain, L. (1989). A technique for determining in-cloud formation of SO4. Geophysical Research Letters, 16, 57–60.

  • Husain, L., Dutkiewicz, V. A., Husain, M. M., Khwaja, H. A., Burkhard, E. G., Mehmood, G., Parekh, P. P., & Canelli, E. (1991). A study of heterogeneous oxidation of SO2 in summer clouds. Journal of Geophysical Research: Atmospheres, 96, 18789–18805.

  • Husain, L., Rattigan, O. V., Dutkiewicz, V., Das, M., Judd, C. D., Khan, A. R., Richter, R., Balasubramanian, R., Swami, K., & Walcek, C. J. (2000). Case studies of the SO2 + H2O2 reaction in clouds. Journal of Geophysical Research, 105, 9831–9841.

  • Husain, L., Ghauri, B., Yang, K., Khan, A. R., & Rattigan, O. V. (2004). Application of the SO42−/Se tracer technique to study SO2 oxidation in cloud and fog on a time scale of minutes. Chemosphere, 54, 177–183.

  • Ibusuki, T., Ohsawa, M., & Takeuchi, K. (1990). Metal ion catalyzed oxidation of SO2 in the presence of trace H2O2 in aqueous solution under environmental reaction conditions. Atmospheric Environment, 24A, 1325–1330.

  • Igawa, M., Tsutsumi, Y., Mori, T., & Okochi, H. (1998). Fogwater chemistry at a mountainside forest and the estimation of the air pollutant deposition via fog droplets based on the atmospheric quality at the mountain base. Environmental Science & Technology, 32, 1566–1572.

  • Ikeda, Y., Yasuda, R., Higashino, H., Yamada, T., Hatakeyama, S., & Murano, K. (1996). An analysis of acid fog and air pollution at Mt. Akagi (2): weather condition and fogwater pollution characteristics. Journal of Japan Society for Atmospheric Environment, 31, 292–302 In Japanese, abstract in English.

  • Ishikawa, T., & Hashimoto, Y. (1988). Determination of trace amount of selenium (IV) and selenium (VI) in precipitation by fluorescence HPLC. Japan Analyst (BunSeki Kagaku), 37, 344–348 (In Japanese, abstract in English).

  • Kagawa, M., & Ishizaka, Y. (2014). Conversion of SO2 to particulate sulfate during transport from China to Japan – assessment by selenium in aerosols. Aerosol and Air Quality Research, 14, 269–279.

  • Kagawa, M., Ishizaka, Y., & Ohta, K. (2003). Sources of sulfate in winter aerosols over the Sea of Japan, as inferred from selenium composition. Atmospheric Environment, 37, 1593–1600.

  • Kaul, D. S., Gupta, T., & Tripathi, S. N. (2012). Chemical and microphysical properties of the aerosol during foggy and nonfoggy episodes: a relationship between organic and inorganic content of the aerosol. Atmospheric Chemistry and Physics Discussions, 12, 14483–14524.

  • Keene, W. C., & Galloway, J. N. (1984). Organic acidity in precipitation of North America. Atmospheric Environment, 18, 2491–2497.

  • Keene, W. C., Pszenny, A. A. P., Galloway, J. N., & Hawley, M. E. (1986). Sea-salt corrections and interpretation of constituent ratios in maritime precipitation. Journal of Geophysical Research: Atmospheres, 91, 6647–6658.

  • Keene, W. C., Pszenny, A. A. P., Jacob, D. J., Duce, R. A., Galloway, J. N., Schultz-Tokos, J. J., Sievering, H., & Boatman, J. F. (1990). The geochemical cycling of reactive chlorine through the marine troposphere. Global Biogeochemical cycles, 4, 407–430.

  • Kido, M., Osada, K., Inomata, Y., Koike, M., Hara, K., Matsunaga, K., & Iwasaka, Y. (1999, 1998). Chemical compositions of aerosol particle, gas, precipitation and fog water at Mt. Norikura. Observation results at. Meteorological Society of Japan Conference Proceedings 75, 129 (in Japanese).

  • Kiehl, J. T., & Briegleb, B. P. (1993). The relative roles of sulfate aerosols and greenhouse gases in climate forcing. Science, 260, 311–314.

  • Kleinman, L. I., & Daum, P. H. (1991). Oxidation limitation to the formation of H2SO4 near a SO2 source region. Atmospheric Environment, 25A, 2023–2028.

  • Knollengberg, R. G. (1981). Techniques for probing cloud microstructure. In Clouds: their formation, optical properties, and effects (edited by Hobbs P.V. and Deepak A.) (pp. 15–91). Academic Press.

  • Kurokawa, J., Ohara, T., Morikawa, T., Hanayama, S., Janssens-Maenhout, G., Fukui, T., Kawashima, K., & Akimoto, H. (2013). Emissions of air pollutions and greenhouse gases over Asian regions during 2000–2008: Regional emission inventory in Asia (REAS) version 2. Atmospheric Chemistry and Physics, 13, 11019–11058.

  • Langer, J., & Rodhe, H. (1991). A global three-dimensional model of the tropospheric sulfur cycle. Journal of Atmospheric Chemistry, 13, 225–263.

  • Lee, Y. N., & Schwartz, S. E. (1981). Evaluation of the rate of uptake of nitrogen dioxide by atmospheric and surface liquid water. Journal of Geophysical Research: Oceans, 86, 11971–11983.

  • Lelieveld, J., & Heintzenberg, J. (1992). Sulfate cooling effect on climate through in-cloud oxidation of anthropogenic SO2. Science, 258, 117–120.

  • Liu, S. C., McFarland, M., Kley, D., Zafiriou, O., & Huebert, B. (1983). Tropospheric NOx and O3 budgets in the equatorial Pacific. Journal of Geophysical Research, 88, 1360–1368.

  • Matsumoto, K., & Tanaka, H. (1996). Formation and dissociation of atmospheric particulate nitrate and chloride: An approach based on phase equilibrium. Atmospheric Environment, 30, 639–648.

  • Matsumoto, K., Nagao, I., Tanaka, H., Miyaji, H., Iida, T., & Ikebe, Y. (1998). Seasonal characteristics of organic and inorganic species and their size distributions in atmospheric aerosols over the northwest Pacific Ocean. Atmospheric Environment, 32, 1931–1946.

  • Minami, Y., & Ishizaka, Y. (1996). Evaluation of chemical composition in fog water near the summit of a high mountain in Japan. Atmospheric Environment, 30, 3363–3376.

  • Mori, A., Utsunomiya, A., Uno, I., Wakamatsu, S., & Ohara, T. (1997). Analysis of aerosol concentration variation and high concentration episodes observed in the northern Kyushu area. Journal of Japan Society for Atmospheric Environment, 32, 73–89 (in Japanese with English abstract).

  • Nakaguchi, Y., Hiraki, K., Tamari, Y., Fukunaga, Y., Nishikawa, Y., & Shigemathu, T. (1985). Fluorometric determination of inorganic selenium (IV), selenium (VI) and organic selenium in natural waters. Analytical Sciences, 1, 247–252.

  • Okita, T. (1968). Concentration of sulfate and other inorganic metals in fog and cloud water and in aerosol. Journal of the Meteorological Society of Japan, 46, 120–127.

  • Osada, K., Kido, M., Nishita, C., Matsunaga, K., Iwasaka, Y., Nagatani, M., & Nakada, H. (2002). Changes in ionic constituents of free tropospheric aerosol particles obtained at Mt. Norikura (2770 m a.s.l.), central Japan, during the Shurin period in 2000. Atmospheric Environment, 36, 5469–5477.

  • Osada, K., Kido, M., Nishita, C., Matsunaga, K., Iwasaka, Y., Nagatani, M., & Nakada, H. (2007). Temporal variation of water-soluble ions of free tropospheric aerosol particles over central Japan. Tellus B: Chemical and Physical Meteorology, 59, 742–754.

  • Parrish, D. D., Norton, R. B., Bollinger, M. J., Liu, S. C., Murphy, P. C., Albritton, D. L., & Fehsenfeld, F. C. (1986). Measurements of HNO3 and NO3- particulates at a rural site in the Colorado Mountains. Journal of Geophysical Research, 91, 5379–5393.

  • Pye, H. O. T., Nenes, A., Alexander, B., Ault, A. P., Barth, M. C., Clegg, S. L., Collett Jr., J. L., Fahey, K. M., Hennigan, C. J., Herrmann, H., Kanakidou, M., Kelly, J. T., Ku, I.-T., McNeill, V. F., Riemer, N., Schaefer, T., Shi, G., Tilgner, A., Walker, J. T., Wang, T., Weber, R., Xing, J., Zaveri, R. A., & Zuend, A. (2020). The acidity of atmospheric particles and clouds. Atmospheric Chemistry and Physics, 20, 4809–4888.

  • Qian, G. W., Ishizaka, Y., Minami, Y., Kurahashi, Y., & Takenaka, C. (1992). Transformation of individual aerosol particles in acidic fog evolution. Journal of the Meteorological Society of Japan, 70, 711–722.

  • Ram, K., Sarin, M. M., Sudheer, A. K., & Rengarajan, R. (2012). Carbonaceous and secondary inorganic aerosols during wintertime fog and haze over urban sites in the Indo-Gangetic Plain. Aerosol and Air Quality Research, 12, 359–370.

  • Rattigan, O. V., Dutkiewicz, V. A., Das, M., Judd, C. D., & Husain, L. (2001a). Oxidation of SO2 in clouds at Whiteface Mountain. Water, Air, and Soil Pollution: Focus, 1, 391–400.

  • Rattigan, O. V., Reilly, J., Judd, C. D., Moore, K. F., Das, M., Sherman, D. E., Dutkiewicz, V. A., Collett Jr., J. L., & Husain, L. (2001b). Sulfur dioxide oxidation in clouds at Whiteface Mountain as a function of drop size. Journal of Geophysical Research, 106, 17347–17358.

  • Reilly, J. E., Rattigan, O. V., Moore, K. F., Judd, C., Sherman, D. E., Dutkiewicz, V. A., Kreidenweis, S. M., Husain, L., & Collett Jr., J. L. (2001). Drop size-dependent S(IV) oxidation in chemically heterogeneous radiation fogs. Atmospheric Environment, 35, 5717–5728.

  • Ren, Y., Ding, A., Wang, T., Shen, X., Guo, J., Zhang, J., Wang, Y., Xu, P., Wang, X., Gao, J., & Collett Jr., J. R. (2009). Measurement of gas-phase total peroxides at the summit of Mountain Tai in China. Atmospheric Environment, 43, 1702–1711.

  • Rolph, G. D. 2009. Real-time environmental applications and display system (READY) website. NOAA Air Resources Laboratory, Silver Spring, MD. http://www.arl.noaa.gov/ready/hysplit4.html

  • Sakugawa, H., & Kaplan, I. R. (1993). Measurements of H2O2, aldehydes and organic acids in Los Angeles rainwater: Their sources and deposition rates. Atmospheric Environment, 27B, 203–219.

  • Schwab, J. J., Casson, P., Brandt, R., Husain, L., Dutkewicz, V., Wolfe, D., Demerjian, K. L., Civerolo, K. L., Rattigan, O. V., Felton, H. D., & Dukett, J. E. (2016a). Atmospheric chemistry measurements at Whiteface Mountain, NY: Cloud water chemistry, precipitation chemistry, and particulate matter. Aerosol and Air Quality Research, 16, 841–854.

  • Schwab, J. J., Wolfe, D., Casson, P., Brandt, R., Demerjian, K. L., Husain, L., Dutkiewicz, V. A., Civerolo, K. L., & Rattigan, O. V. (2016b). Atmospheric science research at Whiteface Mountain, NY: site description and history. Aerosol and Air Quality Research, 16, 827–840.

  • Seinfeld, J. H., & Pandis, S. N. (1998). Atmospheric Chemistry and Physics (p. 1326). John Wiley & Sons.

  • Tago, H., Kimura, H., Kozawa, K., & Fujie, K. (2006). Long-term observation of fog water composition at two mountainous sites in Gunma prefecture, Japan. Water, Air, and Soil Pollution, 175, 375–391.

  • Tsutsumi, Y., Makino, Y., & Jensen, J. (1996). Aircraft measurements of tropospheric ozone over the western Pacific Ocean. Atmospheric Environment, 30, 1763–1772.

  • Ueda, S., Hirose, Y., Miura, K., & Okochi, H. (2014). Individual aerosol particles in and below clouds along a Mt. Fuji slope: Modification of sea-salt-containing particles by in-cloud processing. Atmospheric Research, 137, 216–227.

  • Valverde-Canossa, J., Wieprecht, W., Acker, K., & Moortgat, G. K. (2005). H2O2 and organic peroxide measurements in an orographic cloud: The FEBUKO experiment. Atmospheric Environment, 39, 4279–4290.

  • Wakamatsu, S., Tazuko Morikawa, T., & Ito, A. (2013). Air pollution trends in Japan between 1970 and 2012 and impact of urban air pollution countermeasures. Asian Journal of Atmospheric Environment, 7, 177–190.

  • Wallace, J. M., & Hobbs, P. V. (2006). Atmospheric science: An introductory survey. 2nd ed (p. 483). Academic Press/Elsevier.

  • Watanabe, K., Ishizaka, Y., & Tanaka, H. (1995). Measurements of atmospheric peroxides concentrations near the summit of Mt Norikura in Japan. Journal of the Meteorological Society of Japan, 73, 1153–1160.

  • Watanabe, K., Ishizaka, Y., & Takenaka, C. (1999). Chemical composition of fog water near the summit of Mt. Norikura in Japan. Journal of the Meteorological Society of Japan, 77, 997–1006.

  • Watanabe, K., Ishizaka, Y., Minami, Y., & Yoshida, K. (2001). Peroxide concentrations in fog water at mountains sites in Japan. Water, Air, and Soil Pollution, 130, 1559–1564.

  • Watanabe, K., Takebe, Y., Sode, N., Igarashi, Y., Takahashi, H., & Dokiya, Y. (2006). Fog and rain water chemistry at Mt. Fuji: A case study during the September 2002 campaign. Atmospheric Research, 82, 652–662.

  • Watanabe, K., Honoki, H., Iwai, A., Tomatsu, A., Noritake, K., Miyashita, N., Yamada, K., Yamada, H., Kawamura, H., & Aoki, K. (2010). Chemical charactristics of fog water at Mt. Tateyama, near the coast of the Japan Sea in central Japan. Water Air Soil and Pollution, 211, 379–393.

  • Watanabe, K., Honoki, H., Iwama, S., Iwatake, K., Mori, S., Nishimoto, D., Komori, S., Saito, Y., Yamada, H., & Uehara, Y. (2011). Chemical composition of fog water at Mt. Tateyama near the coast of the Japan sea in central Japan. Erdkunde, 65, 233–245.

  • Watanabe, K., Yachi, C., Nishibe, M., Michigami, S., Saito, Y., Eda, N., Yamazaki, N., & Hirai, T. (2016). Measurements of atmosphere hydroperoxides over a rural site in central Japan during summers using a helicopter. Atmospheric Environment, 148, 174–182.

  • Watanabe, K., Yachi, C., Song, X. J., Kakuyama, S., Nishibe, M., & Jin, S. J. (2018). Atmospheric hydroperoxides measured over a rural site in central Japan during spring: helicopter-borne measurements. Journal of Atmospheric Chemistry, 75, 141–153.

  • Wilson, T. R. S. (1975). Salinity and the major elements of seawater. In J. P. Riley & G. Skirrow (Eds.), Chemical Oceanography Second Edition (Vol. 1, pp. 365–413). Academic Press.

  • Yamaguchi, T., Katata, G., Noguchi, I., Sakai, S., Watanabe, Y., Uematsu, M., & Furutani, H. (2015). Long-term observation of fog chemistry and estimation of fog water and nitrogen input via fog water deposition at a mountainous site in Hokkaido, Japan. Atmospheric Research, 151, 82–92.

Download references

Acknowledgements

The authors are deeply grateful to Professors K. Ohta, H. Tanaka, I. Nagao, K. Osada, and D. Aryal. We are also grateful to Prof. Y. Nakaguchi for the Se analyses. We would like to express our gratitude to Gifu Prefecture and the Asia Center for Air Pollution Research for providing acidic gas data and acidity of rainwater. The present study was supported by the Japan Science and Technology Corporation—Core Research for Environmental Science and Technology (JST-CREST, 112968). Part of this study was also supported by the JST-CREST (115161) and the IHAS Special Research Project, Nagoya University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masako Kagawa.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kagawa, M., Katsuta, N. & Ishizaka, Y. Chemical Characteristics of Cloud Water and Sulfate Production Under Excess Hydrogen Peroxide in a High Mountainous Region of Central Japan. Water Air Soil Pollut 232, 177 (2021). https://doi.org/10.1007/s11270-021-05099-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-021-05099-y

Keywords

Navigation