Skip to main content
Log in

Consistent dynamic model identification of the Stäubli RX-160 industrial robot using convex optimization method

  • Original Article
  • Published:
Journal of Mechanical Science and Technology Aims and scope Submit manuscript

Abstract

Dynamic models of robot manipulators with standard dynamic parameters are required for simulations, model-based controller design and external force estimation. The aim of this work is to identify the complete dynamic model of the 6-axis Stäubli RX-160 industrial robot. A convex optimization-based method is used for parameter identification. Consistent model parameters are obtained as the result of the optimization procedure subject to physical constraints. Low-speed behavior of the robot being dominated by joint friction, the dynamic model includes an algebraic friction model consisting of the Coulomb and viscous friction components along with the Stribeck effect. The coupled mechanical structure of the 5th and 6th joints, and elasticity due to the presence of balancing springs are also represented in the proposed dynamic model. The ordinary least square error method is used for the performance evaluation of the convex optimization-based method. Estimated parameters from both methods are experimentally verified over identification and test trajectories. The identified model is finally used as a basis in the estimation of external forces acting on the robot’s end-effector. The proposed sensor-less model-based approach for the estimation of external forces constitutes an alternative mean of experimental validation. Comparison of computed external forces with measured ones by an F/T transducer shows that the dynamic model obtained with the proposed method provides an accurate estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Chen, G. Ma, S. Lin and J. Gao, Adaptive fuzzy computed-torque control for robot manipulator with uncertain dynamics, International Journal of Advanced Robotic Systems, 9(6) (2012) 237–245.

    Article  Google Scholar 

  2. F. Ficuciello, L. Villani and B. Siciliano, Variable impedance control of redundant manipulators for intuitive human-robot physical interaction, IEEE Transactions on Robotics, 31(4) (2015) 850–863.

    Article  Google Scholar 

  3. J. Wu, X. Han and Y. Tao, Kinematic response of industrial robot with uncertain-but-bounded parameters using interval analysis method, Journal of Mechanical Science and Technology, 33(1) (2019) 333–340.

    Article  Google Scholar 

  4. F. Richter, R. K. Orosco and M. C. Yip, Open-sourced reinforcement learning environments for surgical robotics, arXiv Preprint, arXiv: 1903.02090 (2019).

    Google Scholar 

  5. W. Wu, S. Zhu, X. Wang and H. Liu, Closed-loop dynamic parameter identification of robot manipulators using modified Fourier series, International Journal of Advanced Robotic Systems, 9(1) (2012) 29–37.

    Article  Google Scholar 

  6. S. Wang, X. Shao, L. Yang and N. Liu, Deep learning aided dynamic parameter identification of 6-DOF robot manipulators, IEEE Access, 8 (2020) 138102–138116.

    Article  Google Scholar 

  7. C. Gaz, M. Cognetti, A. Oliva, P. R. Giordano and A. De Luca, Dynamic identification of the franka emika panda robot with retrieval of feasible parameters using penalty-based optimization, IEEE Robotics and Automation Letters, 4(4) (2019) 4147–4154.

    Article  Google Scholar 

  8. B. Armstrong, On finding exciting trajectories for identification experiments involving systems with nonlinear dynamics, The International Journal of Robotics Research, 8(6) (1989) 28–48.

    Article  Google Scholar 

  9. J. Swevers, C. Ganseman, J. De Schutter and H. Van Brussel, Experimental robot identification using optimised periodic trajectories, Mechanical Systems and Signal Processing, 10(5) (1996) 561–577.

    Article  Google Scholar 

  10. J. Jia, M. Zhang, X. Zang, H. Zhang and J. Zhao, Dynamic parameter identification for a manipulator with joint torque sensors based on an improved experimental design, Sensors, 19(10) (2019) 2248–2264.

    Article  Google Scholar 

  11. S. Briot and M. Gautier, Global identification of joint drive gains and dynamic parameters of parallel robots, Multibody System Dynamics, 33(1) (2015) 3–26.

    Article  MathSciNet  MATH  Google Scholar 

  12. G. Zak, B. Benhabib, R. G. Fenton and I. Saban, Application of the weighted least squares parameter estimation method to the robot calibration, ASME Journal of Mechanical Design, 116(3) (1994) 890–893.

    Article  Google Scholar 

  13. M. M. Olsen and H. G. Petersen, A new method for estimating parameters of a dynamic robot model, IEEE Transactions on Robotics and Automation, 17(1) (2001) 95–100.

    Article  Google Scholar 

  14. M. Gautier and P. Poignet, Extended Kalman filtering and weighted least squares dynamic identification of robot, Control Engineering Practice, 9(12) (2001) 1361–1372.

    Article  Google Scholar 

  15. W. Ge, B. Wang and H. Mu, Dynamic parameter identification for reconfigurable robot using adaline neural network, Proc. of 2019 IEEE International Conference on Mechatronics and Automation (2019) 319–324.

    Chapter  Google Scholar 

  16. K. K. Ahn and H. P. H. Anh, System modeling and identification the two-link pneumatic artificial muscle (pam) manipulator optimized with genetic algorithms, Proc. of 2006 SICE-ICASE IEEE International Joint Conference (2006) 4744–4749.

    Chapter  Google Scholar 

  17. R. D. Al-Dabbagh, A. Kinsheel, S. Mekhilef, M. S. Baba and S. Shamshirband, System identification and control of robot manipulator based on fuzzy adaptive differential evolution algorithm, Advances in Engineering Software, 78 (2014) 60–66.

    Article  Google Scholar 

  18. Y. Liu, Z. Hou, H. Wang, J. Liang, G. Yang, Y. Zhang, Z. Xu and W. Wang, Parameter identification of collaborative robot based on improved artificial fish swarm algorithm, Proc. of 2020 IEEE International Conference on High Performance Big Data and Intelligent Systems (2020) 1–7.

    Google Scholar 

  19. H. Jahandideh and M. Namvar, Use of PSO in parameter estimation of robot dynamics; part two: robustness, Proc. of IEEE 16th International Conference on System Theory, Control and Computing (2012) 1–6.

    Google Scholar 

  20. V. Mata, F. Benimeli, N. Farhat and A. Valera, Dynamic parameter identification in industrial robots considering physical feasibility, Advanced Robotics, 19(1) (2005) 101–119.

    Article  Google Scholar 

  21. Y. Wang, R. Gondokaryono, A. Munawar and G. S. Fischer, A dynamic model identification package for the da Vinci research kit, IEEE Robotics and Automation Letters, 4(4) (2019) 3657–3664.

    Article  Google Scholar 

  22. C. D. Sousa and R. Cortesao, Physical feasibility of robot base inertial parameter identification: a linear matrix inequality approach, The International Journal of Robotics Research, 33(6) (2014) 931–944.

    Article  Google Scholar 

  23. C. D. Sousa and R. Cortesao, Inertia tensor properties in robot dynamics identification: a linear matrix inequality approach, IEEE/ASME Transactions on Mechatronics, 24(1) (2019) 406–411.

    Article  Google Scholar 

  24. Y. Han, J. Wu, C. Liu and Z. Xiong, An iterative approach for accurate dynamic model identification of industrial robots, IEEE Transactions on Robotics (2020) 1577–1594.

    Google Scholar 

  25. T. Xu, J. Fan, Y. Chen, X. Ng, M. H. Ang, Q. Fang, Y. Zhu and J. Zhao, Dynamic identification of the KUKA LBR iiwa robot with retrieval of physical parameters using global optimization, IEEE Access, 8 (2020) 108018–108031.

    Article  Google Scholar 

  26. F. Glineur, Conic optimization: an elegant framework for convex optimization, Belgian Journal of Operations Research, Statistics and Computer Science, 41(1–2) (2001) 5–28.

    MathSciNet  MATH  Google Scholar 

  27. D. Dautbegovic, Convex optimization methods for system identification, Master’s Theses, Linnaeus University, Sweden (2014).

    Google Scholar 

  28. B. Armstrong-Hélouvry, P. Dupont and C. C. De Wit, A survey of models, analysis tools and compensation methods for the control of machines with friction, Automatica, 30(7) (1994) 1083–1138.

    Article  MATH  Google Scholar 

  29. H. Olsson, K. J. Åström, C. C. De Wit, M. Gäfvert and P. Lischinsky, Friction models and friction compensation, European Journal of Control, 4(3) (1998) 176–195.

    Article  MATH  Google Scholar 

  30. W. Khalil and E. Dombre, Modeling, Identification and Control of Robots, Butterworth-Heinemann (2004).

    MATH  Google Scholar 

  31. B. Bona, M. Indri and N. Smaldone, Nonlinear friction estimation for digital control of direct-drive manipulators, Proc. of 2003 IEEE European Control Conference (2003) 2685–2690.

    Chapter  Google Scholar 

  32. A. Wahrburg, S. Zeiss, B. Matthias and H. Ding, Contact force estimation for robotic assembly using motor torques, Proc. of 2014 IEEE International Conference on Automation Science and Engineering (2014) 1252–1257.

    Chapter  Google Scholar 

  33. M. Linderoth, A. Stolt, A. Robertsson and R. Johansson, Robotic force estimation using motor torques and modeling of low velocity friction disturbances, Proc. of 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (2013) 3550–3556.

    Chapter  Google Scholar 

  34. F. Pique, M. N. Boushaki, M. Brancadoro, E. De Momi and A. Menciassi, Dynamic modeling of the da Vinci research kit arm for the estimation of interaction wrench, Proc. of 2019 International Symposium on Medical Robotics (2019) 1–7.

    Google Scholar 

  35. J. Hollerbach, W. Khalil and M. Gautier, Model identification Springer Handbook of Robotics, Springer, Cham. (2016) 113–138.

    Book  Google Scholar 

  36. J. Jovic, A. Escande, K. Ayusawa, E. Yoshida, A. Kheddar and G. Venture, Humanoid and human inertia parameter identification using hierarchical optimization, IEEE Transactions on Robotics, 32(3) (2016) 726–735.

    Article  Google Scholar 

  37. R. Waiboer, Dynamic modelling, identification and simulation of industrial robots, Doctoral Dissertation, University of Twente, Netherlands (2007).

    Google Scholar 

  38. B. Siciliano, L. Sciavicco, L. Villani and G. Orioli, Robotics: Modelling, Planning and Control, Springer Science & Business Media (2010).

    Google Scholar 

  39. B. Armstrong-Helouvry, Control of Machines with Friction, Springer Science & Business Media (2012).

    MATH  Google Scholar 

  40. M. Gautier, Numerical calculation of the base inertial parameters of robots, Journal of Robotic Systems, 8(4) (1991) 485–506.

    Article  MATH  Google Scholar 

  41. Stäubli Faverges, Arm - RX Series 160 Family Instruction Manual, Faverges, France (2008).

    Google Scholar 

  42. S. Diamond and S. Boyd, CVXPY: a python-embedded modeling language for convex optimization, The Journal of Machine Learning Research, 17(1) (2016) 2909–2913.

    MathSciNet  MATH  Google Scholar 

  43. R. E. Perez, P. W. Jansen and J. R. R. A. Martins, pyOpt: a python-based object-oriented framework for nonlinear constrained optimization, Structural and Multidisciplinary Optimization, 45(1) (2012) 101–118.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omer Faruk Argin.

Additional information

Omer Faruk Argin received the B.Sc. degree in Mechatronics Engineering from the Kocaeli University, Kocaeli, Turkey, in 2009, and the M.Sc. degree in Mechatronics Engineering from the Istanbul Technical University, Istanbul, Turkey, in 2014. He is currently a Ph.D. student at the Istanbul Technical University, Istanbul, Turkey.

Zeki Yagiz Bayraktaroglu received the B.Sc. degree in Mechanical Engineering from the Istanbul Technical University, Istanbul, Turkey, the M.Sc. in Robotics from the Ecole Nationale Supérieure d’Arts et Métiers, Paris, France and the Ph.D. in Robotics from the University of Versailles Saint Quentin-en-Yvelines, Versailles, France, in 1997, 1998, and 2002, respectively. He is currently an Associate Professor, Department of Mechanical Engineering, Istanbul Technical University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Argin, O.F., Bayraktaroglu, Z.Y. Consistent dynamic model identification of the Stäubli RX-160 industrial robot using convex optimization method. J Mech Sci Technol 35, 2185–2195 (2021). https://doi.org/10.1007/s12206-021-0435-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12206-021-0435-1

Keywords

Navigation