Skip to main content
Log in

Electrophysical Properties of Low-Density Polyethylene and Zeolite Composites

  • GENERAL PURPOSE MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

Composites based on a homogeneous mixture of low-density polyethylene (LDPE) with powdered natural zeolite (clinoptilolite and heulandite of Agdag deposits, Azerbaijan) in the form of films 140–200 μm thick and 20 mm in diameter have been obtained by hot pressing at a temperature of 403–413 K and pressure of 15 MPa, followed by quenching in a mixture of ice and water. The dielectric parameters (the real part of the dielectric constant (ε'), the tangent of the dielectric loss angle (tan δ), and the electrical conductivity (σ)) of the composite samples of 60 vol % LDPE/40 vol % zeolite and 40 vol % LDPE/60 vol % zeolite have been examined at frequencies of 25–106 Hz and in a temperature range of 293–403 K. On the basis of the temperature dependence of the electrophysical parameters of composite samples, it has been revealed that tanδ and σ increase with an increase in the filler content and this is associated with an increase in the concentration of charge carriers and their mobility. The study of the frequency dependences ε′ = f(log ν), tan δ = f(log ν), and log σ = f(log ν) has shown the presence of two linear regions of the frequency dependences of electrical conductivity, which change according to the law σac(ν) ∼ ν0.73, and this is more consistent with the hopping mechanism of electrical conductivity of LDPE/zeolite composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Tanaka, T., Dielectric nanocomposites with insulating properties, IEEE Trans. Dielectr. Electr. Insul., 2005, vol. 12, no. 5, pp. 914–918.

    Article  CAS  Google Scholar 

  2. Krishnamoorti, R., Advanced polymer-nanocomposites: Novel properties and applications, Chem. Mater., 2007, vol. 19, pp. 2736–2751.

    Article  Google Scholar 

  3. Njugun, J. and Peilichowski, K., Polymer nanocomposites for aerospace applications: Fabrication, Adv. Eng. Mater., 2004, no. 6, pp. 193–210.

  4. Kozlov, G.V., Structure and properties of particulate-filled polymer nanocomposites, Phys.-Usp., 2015, vol. 58, no. 1, pp. 33–60.

    Article  CAS  Google Scholar 

  5. Ul’zutaev, A.N. and Ushakov, N.M., Temperature dependence of the dielectric properties of metal-polymer composites based on zinc oxide nanoparticles stabilized in low-density polyethylene matrix, Tech. Phys. Lett., 2008, vol. 34, pp. 851–853. https://doi.org/10.1134/S106378500810012X

    Article  CAS  Google Scholar 

  6. Chmutin, I.A., Ryvkina, N.G., Solov’eva, A.B., Kedrina, N.F., Timofeeva, V.A., Rozhkova, N.N., and McQueen, D.N., Electric properties of composites with a shungite filler, Polym. Sci., Ser. A, 2004, vol. 46, no. 6, pp. 664–671.

    Google Scholar 

  7. Dubnikova, I.L., Kedrina, N.F., Solov’eva, A.B., et al., The effect of filler nature on the crystallization behavior and mechanical properties of filled polypropylene, Polym. Sci., Ser. A, 2003, vol. 45, no. 3, pp. 281–286.

    Google Scholar 

  8. Moskalyuk, O.A., Aleshin, A.N., Tsobkallo, E.S., Krestinin, A.V., and Yudin, V.E., Electrical conductivity of polypropylene fibers with dispersed carbon fillers, Phys. Solid State, 2012, vol. 54, pp. 2122–2127. https://doi.org/10.1134/S1063783412100253

    Article  CAS  Google Scholar 

  9. Ul’zutuyev, A.N., Ushakov, N.M., Yurkov, G.Yu., and Kosobudskii, I.D., Thermal hysteresis in the dielectric properties of composites based on transition metal oxide and sulfide nanoparticles stabilized in a low-density polyethylene matrix, Tech. Phys. Lett., 2009, vol. 35, pp. 476–478. https://doi.org/10.1134/S1063785009050277

    Article  CAS  Google Scholar 

  10. Maharramov, A.M., Strukturnoe i radiatsionnoe modifitsirovanie elektretnykh, p’ezoelektricheskikh svoistv polimernykh kompozitov (Structural and Radiation Modification of Electret, Piezoelectric Properties of Polymer Composites), Baku: Elm, 2001.

  11. Vannikov, A.V., Matveev, V.K., Sichkar, V.P., and Tyutnev, A.P., Radiatsionnye effekty v polimerakh. Elektricheskie svoistva (Radiation Effects in Polymers. Electrical Properties), Moscow: Nauka, 1982.

  12. Sokolova, M.D., Davydova, M.L., and Shadrinov, N.V., The use of natural zeolites in the creation of frost-resistant rubber for sealing purposes, Proc. 14th Int. Correspond. Sci. and Pract. Conf. “Technical Sciences–from Theory to Practice”, October 10, 2012, Polonskii, Ya.A., Ed., Novosibirsk: SibAK, 2012, pp. 63–70.

  13. Dzhafarov, V.D., Filled polyethylene compositions zeolite, Chem. Problems, 2005, no. 3, pp. 120–122.

  14. Magerramov, A.M., Mamedova, R.L., Ismailov, I.M., et al., The dielectric properties of polypropylene/Na+ montmorillonite nanoclays upon heating and cooling, Tech. Phys., 2017, vol. 62, no. 9, pp. 1377–1380. https://doi.org/10.1134/S106378421709016X

    Article  CAS  Google Scholar 

  15. Gashimov, A.M. and Zakieva, I.G., Dielectric parameters of composites based on electric discharge processed natural zeolite, Tech. Phys., 2017, vol. 62, no. 9, pp. 1381–1384. https://doi.org/10.1134/S1063784217090080

    Article  CAS  Google Scholar 

  16. Kuramshina, Z.D., Galikhanov, M.F., and Deberdeev, R.Ya., Effect of zeolite on the properties of low-pressure polyethylene, Vestn. Kazan. Tekhnol. Univ., 2012, vol. 15, no. 14, pp. 126–128.

    Google Scholar 

  17. Efimenko, I.S., Valenkevich, V.A., and Kanitskaja, L.V., Measuring of dielectric losses natural and synthetic zeolites, Sovr. Naukoem. Tekhnol., 2005, no. 11, pp. 40–41.

  18. Vshivkov, S.A., Fazovye perekhody polimernykh sistem vo vneshnikh polyakh (Phase Transitions of Polymer Systems in External Fields), St. Petersburg: LAN, 2013.

  19. Sazhin, B.I., Lobanov, A.M., Romanovskaya, O.S., et al., Elektricheskie svoistva polimerov (Electrical Properties of Polymers), Leningrad: Khimiya, 1986.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Magerramov, V. Dzh. Dzhafarov, M. N. Bairamov, N. Sh. Aliev, P. Sh. Alkhanov or G. Kh. Musaev.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magerramov, A.M., Dzhafarov, V.D., Bairamov, M.N. et al. Electrophysical Properties of Low-Density Polyethylene and Zeolite Composites. Inorg. Mater. Appl. Res. 12, 452–456 (2021). https://doi.org/10.1134/S2075113321020349

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321020349

Keywords:

Navigation