Skip to main content
Log in

Increasing the Charge Stability of Gate Dielectric Films of MIS Structures by Doping Them with Phosphorus

  • NEW TECHNOLOGIES FOR OBTAINING AND PROCESSING MATERIALS
  • Published:
Inorganic Materials: Applied Research Aims and scope

Abstract

It is shown that thermal doping of SiO2 film with phosphorus, which leads to the formation of a thin film of phosphosilicate glass on its surface, makes it possible to increase the charge stability of the gate dielectric of MIS structures. It is established that the presence of a film of phosphosilicate glass makes it possible to significantly reduce local injection currents flowing in defective areas owing to the capture of electrons by traps in a film of glass, leading to an increase in the energy barrier. As a result, the number of structures that break down at low values of the charge injected into the dielectric under high-field influences significantly decreases. It is shown that, in a film of phosphosilicate glass, the heating of injected electrons decreases, which also leads to an increase in the charge stability of the gate dielectric under high-field injection effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Strong, A.W., Wu, E.Y., Vollertsen, R.-P., Suñé, J., La Rosa, G., Sullivan, T.D., and Rauch, S.E. III, Reliability Wearout Mechanisms in Advanced CMOS Technologies, New Jersey: Wiley–IEEE, 2009.

  2. Palumbo, F., Wen, C., Lombardo, S., Pazos, S., Aguirre, F., Eizenberg, M., Hui, F., and Lanza, M., A review on dielectric breakdown in thin dielectrics: Silicon dioxide, high-k, and layered dielectrics, Adv. Funct. Mater., 2020, vol. 30, no. 18, art. ID 1900657. https://doi.org/10.1002/adfm.201900657

    Article  CAS  Google Scholar 

  3. Balk, P. and Eldridge, J.M., Phosphosilicate glass stabilization of FET devices, Proc. IEEE, 1969, vol. 57, no. 9, pp. 1558–1563.

    Article  CAS  Google Scholar 

  4. Idris, M.I., Weng, M.H., Peters, A., Siddall, R.J., Townsend, N.J., Wright, N.G., and Horsfall, A.B., Positive flatband voltage shift in phosphorus doped SiO2/N-type 4H-SiC MOS capacitors under high field electron injection, J. Phys. D: Appl. Phys., 2019, vol. 52, no. 50, art. ID 505102.

    Article  CAS  Google Scholar 

  5. Yano, H., Kanafuji, N., Osawa, A., Hatayama, T., and Fuyuki, T., Threshold voltage instability in 4H-SiC MOSFETs with phosphorus-doped and nitrided gate oxides, IEEE Trans. Electron Devices, 2015, vol. 62, no. 2, pp. 324–332.

    Article  CAS  Google Scholar 

  6. Liu, G., Tuttle, B.R., and Dhar, S., Silicon carbide: A unique platform for metal-oxide-semiconductor physics, Appl. Phys. Rev., 2015, vol. 2, art. ID 021307.

    Article  Google Scholar 

  7. Fiorenza, P., Giannazzo, F., and Roccaforte, F., Characterization of SiO2/4H-SiC Interfaces in 4H-SiC MOSFETs: A Review, Energies, 2019, vol. 12, no. 12, art. ID 2310.

    Article  CAS  Google Scholar 

  8. Gritsenko, V.A., Hot electrons in silicon oxide, Phys.-Usp., 2017, vol. 60, no. 9, pp. 902–910. https://doi.org/10.3367/UFNe.2016.12.038008

    Article  CAS  Google Scholar 

  9. Levin, M.N., Gitlin, V.R., Tatarintsev, A.V., Ostrouhov, S.S., and Kadmensky, S.G., X-ray and UV adjustment of threshold voltage in MOS-circuit manufacture, Russ. Microelectron., 2002, vol. 31, no. 6, pp. 346–350.

    Article  Google Scholar 

  10. Mikhailovskii, I.P., Potapov, P.V., and Epov, A.E., Sign of the charge accumulated in thermal films of silicon MIS structures under high electric field condition, Phys. Status Solidi A, 1986, vol. 94, pp. 679–685.

    Article  CAS  Google Scholar 

  11. Andreev, D.V., Bondarenko, G.G., and Stolyarov, A.A., Charge characteristics of MOS structure with thermal SiO2 films doped with phosphorus under high-field electron injection, Inorg. Mater.: Appl. Res., 2016, vol. 7, no. 2, pp. 187–191.

    Article  Google Scholar 

  12. Andreev, D.V., Bondarenko, G.G., Andreev, V.V., Maslovsky, V.M., and Stolyarov, A.A., Modification of MIS devices by irradiation and high-field electron injection treatments, Acta Phys. Pol., A, 2017, vol. 132, no. 2, pp. 245–248.

    Article  CAS  Google Scholar 

  13. Arnold, D., Cartier, E., and DiMaria, D.J., Theory of high-field electron transport and impact ionization in silicon dioxide, Phys. Rev. B, 1994, vol. 49, no. 15, pp. 10278–10297. https://doi.org/10.1103/PhysRevB.49.10278

    Article  CAS  Google Scholar 

  14. Andreev, V.V., Bondarenko, G.G., Maslovsky, V.M., Stolyarov, A.A., and Andreev, D.V., Control current stress technique for the investigation of gate dielectrics of MIS devices, Phys. Status Solidi C, 2015, vol. 12, no. 3, pp. 299–303.

    Article  CAS  Google Scholar 

  15. Andreev, V.V., Maslovsky, V.M., Andreev, D.V., and Stolyarov, A.A., Method of stress and measurement modes for research of thin dielectric films of MIS structures, Proc. SPIE, 2016, vol. 10224, art. ID 1022429.

    Article  Google Scholar 

  16. JEDEC Standard, JESD35-A: Procedure for the Wafer-Level-Testing of Thin Dielectrics, 2001. https://www. jedec.org/standards-documents/docs/jesd-35

  17. Andreev, D.V., Bondarenko, G.G., Andreev, V.V., and Stolyarov, A.A., Modification of thin oxide films of MOS structure by high-field injection and irradiation, IOP Conf. Ser.: Mater. Sci. Eng., 2016, vol. 110, art. ID 012041.

  18. Andreev, D.V, Bondarenko, G.G, Andreev, V.V., Maslovsky, V.M., and Stolyarov, A.A., Influence of temperature on high-field injection modification of MIS structures with thermal SiO2 films doped with phosphorus, High Temp. Mater. Processes, 2019, vol. 23, no. 4, pp. 303–312. https://doi.org/10.1615/HighTempMatProc.2019031840

    Article  Google Scholar 

  19. Fanciulli, M., Bonera, E., Nokhrin, S., and Pacchioni, G., Phosphorous–oxygen hole centers in phosphosilicate glass films, Phys. Rev. B, 2006, vol. 74, no. 13, art. ID 134102. https://doi.org/10.1103/PhysRevB.74.134102

    Article  CAS  Google Scholar 

  20. Pacchioni, G., Erbetta, D., Ricci, D., and Fanciulli, M., Electronic structure of defect centers P1, P2, and P4 in P-doped SiO2, J. Phys. Chem. B, 2001, vol. 105, pp. 6097–6102.

    Article  CAS  Google Scholar 

  21. Stesmans, A., Clémer, K., and Afanas’ev, V.V., P-associated defects in the high-κ insulators HfO2 and ZrO2 revealed by electron spin resonance, Phys. Rev. B, 2008, vol. 77, no. 12, art. ID 125341. https://doi.org/10.1103/PhysRevB.77.125341

    Article  CAS  Google Scholar 

Download references

Funding

This study was financially supported by the Ministry of Science and Higher Education of the Russian Federation as a part of the project “Fundamental Research on Methods for Digital Transformation of the Component Base of Micro- and Nanosystems” no. 0705-2020-0041.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Andreev, G. G. Bondarenko, V. V. Andreev or A. A. Stolyarov.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, D.V., Bondarenko, G.G., Andreev, V.V. et al. Increasing the Charge Stability of Gate Dielectric Films of MIS Structures by Doping Them with Phosphorus. Inorg. Mater. Appl. Res. 12, 517–520 (2021). https://doi.org/10.1134/S2075113321020039

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2075113321020039

Keywords:

Navigation