Skip to main content
Log in

Abstract—The review is devoted to time-resolved X-ray microscopy, which is designed to obtain an image of an object under study in real space in two or three dimensions using elements of focusing optics. A full-field X-ray microscope and a scanning X-ray microscope are described, and the possibilities of their use together with the methods of X-ray absorption near edge structure (XANES) and X-ray fluorescence for studying time-dependent processes in condensed media are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. T. Helk, M. Zurch, and C. Spielmann, Struct. Dyn. 6, 010902 (2019).

    Article  CAS  Google Scholar 

  2. Y. Wu and N. Liu, Chem 4, 438 (2018).

    Article  CAS  Google Scholar 

  3. J. Kirz and C. Jacobsen, J. Phys.: Conf. Ser. 186, 012001 (2009).

    Google Scholar 

  4. K. Janssens, W. De Nolf, G. Van Der Snickt, et al., TrAC, Trends Anal. Chem. 29, 464 (2010).

    Article  CAS  Google Scholar 

  5. V. V. Lider, Phys.–Usp. 60, 187 (2017).

    Article  CAS  Google Scholar 

  6. V. V. Lider, Phys.–Usp. 61, 980 (2018).

    Article  CAS  Google Scholar 

  7. L. Strüder, in Synchrotron Light Sources and Free-Electron Lasers, Ed. by E. J. Jaeschke (Springer, Cham, 2015).

    Google Scholar 

  8. J. G. Rocha, N. F. Ramos, S. Lanceros-Méndez, et al., Sens. Actuators, A 110, 119 (2004).

    Article  CAS  Google Scholar 

  9. L. Strüder, Nucl. Instrum. Methods Phys. Res., Sect. A 454, 73 (2000).

    Google Scholar 

  10. J. R. Palmer and G. R. Morrison, Rev. Sci. Instrum. 63, 828 (1992).

    Article  Google Scholar 

  11. R. Cesareo, G. E. Gigante, and A. Castellano, Nucl. Instrum. Methods Phys. Res., Sect. A 428, 171 (1999).

    CAS  Google Scholar 

  12. A. P. Hitchcock and M. F. Toney, J. Synchrotron Radiat. 21, 1019 (2014).

    Article  CAS  Google Scholar 

  13. M. Muller, T. Mey, J. Niemeyer, and K. Mann, Opt. Express 22, 23489 (2014).

    Article  CAS  Google Scholar 

  14. A. Tkachuk, F. Duewer, H. Cui, et al., Z. Kristallogr. 222, 650 (2007).

    CAS  Google Scholar 

  15. A. Sakdinawat and D. Attwood, Nat. Photonics 4, 840 (2010).

    Article  CAS  Google Scholar 

  16. V. V. Lider, J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 11 (6), 1113 (2017).

    Article  CAS  Google Scholar 

  17. J. Kirz, C. Jacobsen, and M. Howells, Q. Rev. Biophys. 28, 33 (1995).

    Article  CAS  Google Scholar 

  18. S. -R. Wu, Y. Hwu, and G. Margaritondo, Materials 5, 1752 (2012).

    Article  CAS  Google Scholar 

  19. M. Howells, C. Jacobsen, T. Warwick, and A. Bos, in Science of Microscopy, Ed. by P. W. Hawkes and J. C. N. Spence (Springer, New York, 2007) p. 835.

    Google Scholar 

  20. J. M. Heck, D. T. Attwood, W. Meyer-Ilse, and E. H. Anderson, J. X-Ray Sci. Technol. 8, 95 (1998).

    CAS  Google Scholar 

  21. W. Chao, E. Anderson, G. Denbeaux, et al., Opt. Lett. 28, 2019 (2003).

    Article  CAS  Google Scholar 

  22. B. Niemann, D. D. Rudolph, and G. Schmahl, Opt. Commun. 12, 160 (1974).

    Article  Google Scholar 

  23. X. Zeng, F. Duewer, M. Feser, et al., Appl. Opt. 47, 2376 (2008).

    Article  Google Scholar 

  24. P. Guttmann, X. Zeng, M. Feser, et al., J. Phys.: Conf. Ser. 186, 012064 (2009).

    Google Scholar 

  25. F. Zernike, Z. Tech. Phys. 16, 454 (1935).

    Google Scholar 

  26. J. J. Rehr and R. C. Albers, Rev. Mod. Phys. 72, 621 (2000).

    Article  CAS  Google Scholar 

  27. I. N. Koprinarov, A. P. Hitchcock, C. T. McCrory, and R. F. Childs, J. Phys. Chem. B 21, 5358 (2002).

    Article  CAS  Google Scholar 

  28. A. P. Hitchcock, C. Morin, Y. M. Heng, et al., J. Biomater. Sci., Polym. Ed. 13, 919 (2002).

    Article  CAS  Google Scholar 

  29. N.-H. Yang, Y. -F. Song, and R.-S. Liu, Front. Environ. Res. 6, 56 (2018).

    Article  Google Scholar 

  30. J. Wang, Y. K. Chen-Wiegart, and J. Wang, Chem. Commun. 49, 6480 (2013).

    Article  CAS  Google Scholar 

  31. J. Wang, Y. K. Chen-Wiegart, and J. Wang, Nat. Commun. 5, 4570 (2014).

    Article  CAS  Google Scholar 

  32. J. N. Weker, N. Liu, S. Misra, et al., Energy Environ. Sci. 7, 2771 (2014).

    Article  CAS  Google Scholar 

  33. F. Yang, Y. Liu, S. K. Martha, et al., Nano Lett. 14, 4334 (2014).

    Article  CAS  Google Scholar 

  34. L. Li, Y. K. Chen-Wiegart, J. Wang, et al., Nat. Commun. 6, 6883 (2015).

    Article  CAS  Google Scholar 

  35. K. W. Knehr, Ch. Eng, and Y. K. Chen-Wiegart, J. Electrochem. Soc. 162, A255 (2015).

    Article  CAS  Google Scholar 

  36. C. J. Chen, W. K. Pang, T. Mori, et al., J. Am. Chem. Soc. 138, 8824 (2016).

    Article  CAS  Google Scholar 

  37. J. Lim, Y. Li, D. H. Alsem, et al., Science 353, 566 (2016).

    Article  CAS  Google Scholar 

  38. Y. Xu, E. Hu, K. Zhang, et al., ACS Energy Lett. 2, 1240 (2017).

    Article  CAS  Google Scholar 

  39. T. Alemu and F.-M. Wang, J. Synchrotron Radiat. 25, 151 (2018).

    Article  CAS  Google Scholar 

  40. S.-M. Bak, Z. Shadike, R. Lin, et al., NPG Asia Mater. 10, 563 (2018).

    Article  Google Scholar 

  41. S.-C. Chao, Y.-C. Yen, Y.-F. Song, et al., J. Electrochem. Soc. 158, A1335 (2011).

    Article  CAS  Google Scholar 

  42. S.-C. Chao, Y.-F. Song, C.-C. Wang, et al., J. Phys. Chem. C 115, 22040 (2011).

    Article  CAS  Google Scholar 

  43. N.-H. Yang, Y.-F. Song, and R.-S. Liu, ACS Energy Lett. 3, 1911 (2018).

    Article  CAS  Google Scholar 

  44. D. Schroder, C. L. Bender, T. Arlt, et al., J. Phys. D: Appl. Phys. 49, 404001 (2016).

    Article  CAS  Google Scholar 

  45. I. D. Gonzalez-Jimenez, K. Cats, T. Davidian, et al., Angew. Chem. 124, 12152 (2012).

    Article  Google Scholar 

  46. S. E. R. Tay, A. E. Goode, J. N. Weker, et al., Nanoscale 8, 1849 (2016).

    Article  CAS  Google Scholar 

  47. M. A. Koronfel, A. E. Goode, J. N. Weker, et al., npj Mater. Degrad. 2, 8 (2018).

    Google Scholar 

  48. F. M. F. De Groot, E. de Smit, M. M. van Schooneveld, et al., ChemPhysChem 11, 951 (2010).

    Article  CAS  Google Scholar 

  49. N. Ohmer, B. Fenk, D. Samuelis, et al., Nat. Commun. 6, 6045 (2015).

    Article  CAS  Google Scholar 

  50. E. De Smit and I. Swart, F. J. Creemer, et al., Nature 456, 222 (2008).

    Article  CAS  Google Scholar 

  51. Y. Liu, J. Wang, M. Azuma, et al., Appl. Phys. Lett. 104, 043108 (2014).

    Article  CAS  Google Scholar 

  52. S. H. Eberhardt, F. Marone, M. Stampanoni, et al., J. Electrochem. Soc. 163, F842 (2016).

    Article  CAS  Google Scholar 

  53. A. Yermukhambetova, C. Tan, S. R. Daemi, et al., Sci. Rep. 6, 35291 (2016).

    Article  CAS  Google Scholar 

  54. J. Wang, Y. K. Chen-Wiegart, C. Eng, et al., Nat. Commun. 7, 12372 (2016).

    Article  CAS  Google Scholar 

  55. F. Marone and M. Stampanoni, J. Synchrotron Radiat. 19, 1029 (2012).

    Article  CAS  Google Scholar 

  56. H. Stoll, A. Puzic, B. van Waeyenberge, and P. Fischer, Appl. Phys. Lett. 84, 3328 (2004).

    Article  CAS  Google Scholar 

  57. A. Puzic, B. Van Waeyenberge, K. W. Chou, et al., J. Appl. Phys. 97, E704 (2005).

    Article  CAS  Google Scholar 

  58. P. Fischer, D. H. Kim, B. L. Mesler, et al., J. Magn. Magn. Mater. 310, 2689 (2007).

    Article  CAS  Google Scholar 

  59. K. W. Chou, A. Puzic, H. Stoll, et al., J. Appl. Phys. 99, F305 (2006).

    Google Scholar 

  60. S. Kasai, P. Fischer, M.-Y. Im, et al., Phys. Rev. Lett. 101, 237203 (2008).

    Article  CAS  Google Scholar 

  61. P. Fischer, IEEE Trans. Magn. 44, 1900 (2008).

    Article  CAS  Google Scholar 

  62. L. Bocklage, B. Kruger, R. Eiselt, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 78, 180405 (2008).

    Article  CAS  Google Scholar 

  63. D. Wortmann, J. Koch, M. Reininghaus, et al., J. Laser Appl. 24, 042017 (2012).

    Article  CAS  Google Scholar 

  64. P. Wessels, J. Ewald, M. Wieland, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 90, 184417 (2014).

    Article  CAS  Google Scholar 

  65. S. Woo, K. M. Song, H. S. Han, et al., Nat. Commun. 8, 15573 (2017).

    Article  CAS  Google Scholar 

  66. A. Vansteenkiste, J. De Baerdemaeker, K. W. Chou, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 77, 144420 (2008).

    Article  CAS  Google Scholar 

  67. A. Vansteenkiste, K. Chou, M. Weigand, et al., Nat. Phys. 5, 332 (2009).

    Article  CAS  Google Scholar 

  68. S. Rao, J. Rhensius, A. Bisig, et al., Sci. Rep. 5, 10695 (2015).

    Article  Google Scholar 

  69. U. Vogt, M. Lindblom, P. Charalambous, et al., Opt. Lett. 31, 1465 (2006).

    Article  Google Scholar 

  70. N. F. Losev and A. N. Smagunova, Fundamentals of X‑Ray Spectral Fluorescence Analysis (Khimiya, Moscow 1982) [in Russian].

    Google Scholar 

  71. A. L. M. Silva, C. A. B. Oliveira, A. L. Gouvea, et al., Anal. Bioanal. Chem. 395, 2073 (2009).

    Article  CAS  Google Scholar 

  72. F. P. Romano, C. Caliri, L. Cosentino, et al., Anal. Chem. 86, 10892 (2014).

    Article  CAS  Google Scholar 

  73. L. Strüder, H. Bräuninger, M. Maier, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 288, 227 (1990).

    Google Scholar 

  74. L. Strüder, Nucl. Instrum. Methods Phys. Res., Sect. A 454, 73 (2000).

    Google Scholar 

  75. K. Sakurai and H. Eba, Anal. Chem. 75, 355 (2003).

    Article  CAS  Google Scholar 

  76. K. Sakurai and M. Mizusawa, AIP Conf. Proc. 705, 889 (2004).

    Article  Google Scholar 

  77. P. Tack, J. Garrevoet, S. Bauters, et al., Anal. Chem. 86, 8791 (2014).

    Article  CAS  Google Scholar 

  78. A. Nakata, K. Fukuda, H. Murayama, et al., Electrochemistry 83, 849 (2015).

    Article  CAS  Google Scholar 

  79. W. Zhao and K. Sakurai, ACS Omega 2, 4363 (2017).

    Article  CAS  Google Scholar 

  80. W. Zhao and K. Sakurai, J. Synchrotron Radiat. 26, 230 (2019).

    Article  CAS  Google Scholar 

  81. T. Wroblewski, Radiat. Phys. Chem. 61, 329 (2001).

    Article  CAS  Google Scholar 

  82. T. Wroblewski, Synchrotron Radiat. News 9, 14 (1996).

    Article  Google Scholar 

  83. H. Eba and K. Sakurai, Appl. Surf. Sci. 252, 2608 (2006).

    Article  CAS  Google Scholar 

  84. K. Sakurai and W. Zhao, Adv. X-Ray Chem. Anal., Jpn 49, 83 (2018).

    CAS  Google Scholar 

  85. W. Zhao, K. Hirano, and K. Sakurai, J. Anal. At. Spectrosc. 34, 2273 (2019).

    Article  CAS  Google Scholar 

  86. H. Wen, M. J. Cherukara, and M. V. Holt, Annu. Rev. Mater. Res. 49, 389 (2019).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Ministry of Science and Higher Education of the Russian Federation within the State Task of the Federal Scientific Research Center “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Lider.

Additional information

Translated by L. Mosina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lider, V.V. Time-Resolved X-Ray Microscopy. J. Surf. Investig. 15, 28–38 (2021). https://doi.org/10.1134/S1027451021010092

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021010092

Keywords:

Navigation