Skip to main content
Log in

Effect of Surface Tension on Carbon Diffusion into a Catalyst Nanoparticle

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract—The synthesis of carbon nanotubes by chemical-vapor deposition (CVD) using a thin-film nickel-based catalyst is studied. An analysis of the size distributions of catalyst nanoparticles is carried out and compared with the distribution of particles from which the growth of carbon nanotubes is observed. The experiment shows that carbon nanotubes grow mainly from particles with sizes from 7 to 19 nm; nanotubes do not grow from particles of other sizes. A thermodynamic model of the solubility of carbon in a nickel nanoparticle is developed. This theoretical model is based on minimizing the Gibbs free energy of the system of nanoparticles that appear after the catalyst film melts. A critical minimum size of the catalyst nanoparticle exists for each set of parameters of the synthesis process, such that, under these conditions, it is able to dissolve a carbon atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. S. V. Bulyarskii, Carbon Nanotubes: Technology, Properties Control, Application (Strezhen’, Ul’yanovsk, 2011) [in Russian].

    Google Scholar 

  2. C. Rutherglen and P. Burke, Nano Lett. 7, 3296 (2007). https://doi.org/10.1021/nl0714839

    Article  CAS  Google Scholar 

  3. K. Jensen, J. Weldon, H. Garcia, and A. Zettl, Nano Lett. 7, 3508 (2007). https://doi.org/10.1021/nl0721113

    Article  CAS  Google Scholar 

  4. L. A. Chernozatonskii, Y. V. Gulyaev, Z. J. Kosakovskaja, et al., Chem. Phys. Lett. 233, 63 (1995). https://doi.org/10.1016/0009-2614(94)01418-U

    Article  CAS  Google Scholar 

  5. S. V. Bulyarskii and A. S. Basaev, J. Exp. Theor. Phys. 108, 688 (2009).

    Article  CAS  Google Scholar 

  6. D. V. Krasnikov, V. L. Kuznetsov, A. I. Romanenko, and A. N. Shmakov, Carbon 139, 105 (2018). https://doi.org/10.1016/j.carbon.2018.06.033

    Article  CAS  Google Scholar 

  7. Mengqi Fan, Su Wu, and Chi Xu, Appl. Phys. A 124, 790 (2018). https://doi.org/10.1007/s00339-018-1916-7

    Article  CAS  Google Scholar 

  8. M. W. Lee, M. A. S. M. Haniff, A. S. Teh, D. C. S. Bien, and S. K. Chen, J. Exp. Nanosci. 10, 1232 (2015). https://doi.org/10.1080/17458080.2014.994679

    Article  CAS  Google Scholar 

  9. K. Zhang, X. Lin, W. Xu, Y. Miao, K. Hu, and Y. Zhang, Optoelectron. Lett. 7, 85 (2011). https://doi.org/10.1007/s11801-011-0169-x

    Article  Google Scholar 

  10. H. Zhang, G. Cao, Z. Wang, Y. Yang, and Z. Gu, Carbon 46, 822 (2008). https://doi.org/10.1016/j.carbon.2008.02.015

    Article  CAS  Google Scholar 

  11. K. N. Lucia, S. G. Norberto, V. Antoninho, et al., J. Mater. Sci. 42, 914 (2007). https://doi.org/10.1007/s10853-006-0009-8

    Article  CAS  Google Scholar 

  12. E. Terrado, I. Tacchini, and A. M. Benito, Carbon 47, 1989 (2009). https://doi.org/10.1016/j.carbon.2009.03.045

    Article  CAS  Google Scholar 

  13. S. V. Bulyarskii, Tech. Phys. 56, 1605 (201).

  14. E. Vanhaecke, F. Huang, Y. Yu, M. Rønning, A. Holmen A., and D. Chen, Top. Catal. 54, 986 (2011). https://doi.org/10.1007/s11244-011-9720-z

    Article  CAS  Google Scholar 

  15. L. Liu and S.-S. Fan, US Appl. No. 20040184981, 2004.

  16. S. V. Bulyarskiy and V. P. Oleynikov, Phys. Status Solidi 141, K7 (1987). https://doi.org/10.1002/pssb.2221410137

    Article  Google Scholar 

  17. S. V. Bulyarskiy and V. I. Fistul’, Thermodynamics and Kinetics of Interacting Defects in Semiconductors (Nauka, Moscow, 1997) [in Russian].

    Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Science and Higher Education of the Russian Federation (project no. 0004-2019-0001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Bulyarskiy or E. P. Kitsyuk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyarskiy, S.V., Kitsyuk, E.P., Lakalin, A.V. et al. Effect of Surface Tension on Carbon Diffusion into a Catalyst Nanoparticle. J. Surf. Investig. 15, 164–168 (2021). https://doi.org/10.1134/S1027451021010213

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451021010213

Keywords:

Navigation