Skip to main content

Advertisement

Log in

Use of RNA Sequencing to Perform Comprehensive Analysis of Long Noncoding RNA Expression Profiles in Macrophages Infected with Trichosporon asahii

  • Original Article
  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Trichosporon asahii (T. asahii) is a clinically important opportunistic pathogenic fungus capable of causing systemic lethal infection in immunosuppressive and immunodeficient hosts. However, the mechanism of the host immune response upon T. asahii infection has not been elucidated. Recent evidence has shown that long noncoding RNAs (lncRNAs) play key roles in regulating the immune response to resist microbial infections. In this study, we analyzed the expression profiles of lncRNAs at 12 and 24 h post-infection (hpi) in THP-1 cells infected with T. asahii using RNA sequencing (RNA-Seq). A total of 64 and 160 lncRNAs displayed significant differentially expressed (DE) at 12 h and 24 hpi, respectively. Among these lncRNAs, 18 lncRNAs were continuous DE at two time points. The DE of eight candidate lncRNAs were verified by real time quantitative polymerase chain reaction (RT-qPCR). Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed to analyze the cis-target genes of 18 DE lncRNAs. The results showed that they were enriched in signaling pathways related to the host immune response, indicating that these lncRNAs might play important roles in fungi–host interactions. Finally, we explored the function of lncRNA NEAT1 and found that the expression of TNF-α and IL-1β declined after NEAT1 knockdown in T. asahii-infected THP-1 cells. To our knowledge, this is the first report of a expression analysis of lncRNAs in macrophages infected with T. asahii. Our study helps to elucidate the role of lncRNAs in the host immune response to early infection by T. asahii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data used to support the findings of this study are included within the supplementary files.

References

  1. Marine M, Brown NA, Riano-Pachon DM, Goldman GH. On and under the skin: emerging basidiomycetous yeast infections caused by trichosporon species. PLoS Pathog. 2015;11(7):e1004982. https://doi.org/10.1371/journal.ppat.1004982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Colombo AL, Padovan AC, Chaves GM. Current knowledge of Trichosporon spp. and Trichosporonosis. Clinical Microbiol Rev. 2011;24(4):682–700. https://doi.org/10.1128/CMR.00003-11.

    Article  CAS  Google Scholar 

  3. Zhang D, Lu X, Liao Y, Xia Z, Peng Z, Yang X, et al. Rapid and simple detection of by optimized colony PCR. Biomed Res Int. 2019;2019:1803278. https://doi.org/10.1155/2019/1803278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7. https://doi.org/10.1038/nature07672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Engreitz JM, Ollikainen N, Guttman M. Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol. 2016;17(12):756–70. https://doi.org/10.1038/nrm.2016.126.

    Article  CAS  PubMed  Google Scholar 

  6. Lu H, Liu H, Yang X, Ye T, Lv P, Wu X, et al. LncRNA BLACAT1 may serve as a prognostic predictor in cancer: evidence from a meta-analysis. Biomed Res Int. 2019. https://doi.org/10.1155/2019/1275491.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 2018;19(3):143–57. https://doi.org/10.1038/nrm.2017.104.

    Article  CAS  PubMed  Google Scholar 

  8. Ma YM, Ouyang J, Wei JY, Maarouf M, Chen JL. Involvement of host non-coding RNAs in the pathogenesis of the influenza virus. Int J Mol Sci. 2017;18(1):18. https://doi.org/10.3390/ijms18010039.

    Article  CAS  Google Scholar 

  9. Huang S, Huang Z, Luo Q, Qing C. The expression of lncRNA NEAT1 in human tuberculosis and its antituberculosis effect. Biomed Res Int. 2018. https://doi.org/10.1155/2018/9529072.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang M, Wang F, Yang J, Zhao D, Wang H, Shao F, et al. Mannan-binding lectin inhibits Candida albicans-induced cellular responses in PMA-activated THP-1 cells through Toll-like receptor 2 and Toll-like receptor 4. PLoS ONE. 2013;8(12):e83517. https://doi.org/10.1371/journal.pone.0083517.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Agustinho DP, de Oliveira MA, Tavares AH, Derengowski L, Stolz V, Guilhelmelli F, et al. Dectin-1 is required for miR155 upregulation in murine macrophages in response to Candida albicans. Virulence. 2017;8(1):41–52. https://doi.org/10.1080/21505594.2016.1200215.

    Article  CAS  PubMed  Google Scholar 

  12. Ganesan S, Rathinam VAK, Bossaller L, Army K, Kaiser WJ, Mocarski ES, et al. Caspase-8 modulates dectin-1 and complement receptor 3-driven IL-1β production in response to β-glucans and the fungal pathogen, Candida albicans. J Immunol (Baltimore Md: 1950). 2014;193(5):2519–30. https://doi.org/10.4049/jimmunol.1400276.

    Article  CAS  Google Scholar 

  13. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. https://doi.org/10.1038/nmeth.3317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28(16):2184–5. https://doi.org/10.1093/bioinformatics/bts356.

    Article  CAS  PubMed  Google Scholar 

  16. Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–5. https://doi.org/10.1038/nbt.3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Li A, Zhang J, Zhou Z. PLEK: a tool for predicting long non-coding RNAs and messenger RNAs based on an improved k-mer scheme. BMC Bioinform. 2014;15:311. https://doi.org/10.1186/1471-2105-15-311.

    Article  CAS  Google Scholar 

  18. Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, et al. CPC2: a fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res. 2017;45(W1):W12–6. https://doi.org/10.1093/nar/gkx428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic composition to classify protein-coding and long non-coding transcripts. Nucleic Acids Res. 2013;41(17):e166. https://doi.org/10.1093/nar/gkt646.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, et al. The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res. 2016;44(D1):D279–85. https://doi.org/10.1093/nar/gkv1344.

    Article  CAS  PubMed  Google Scholar 

  21. Nawrocki EP, Burge SW, Bateman A, Daub J, Eberhardt RY, Eddy SR, et al. Rfam 12.0: updates to the RNA families database. Nucleic Acids Res. 2015. https://doi.org/10.1093/nar/gku1063.

    Article  PubMed  Google Scholar 

  22. Nawrocki EP, Eddy SR. Infernal 11 100-fold faster RNA homology searches. Bioinformatics. 2013;29(22):2933–5. https://doi.org/10.1093/bioinformatics/btt509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. https://doi.org/10.1093/nar/25.17.3389.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006. https://doi.org/10.1093/nar/gkj112.

    Article  PubMed  Google Scholar 

  25. Wu Y, Wei B, Liu H, Li T, Rayner S. MiRPara: a SVM-based software tool for prediction of most probable microRNA coding regions in genome scale sequences. BMC Bioinformatics. 2011;12:107. https://doi.org/10.1186/1471-2105-12-107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S, et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature. 2012;491(7424):454–7. https://doi.org/10.1038/nature11508.

    Article  CAS  PubMed  Google Scholar 

  27. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. https://doi.org/10.1186/s13059-014-0550-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. The Gene Ontology C. The gene ontology resource: 20 years and still going strong. Nucleic Acids Res. 2019;47(D1):D330–8. https://doi.org/10.1093/nar/gky1055.

    Article  CAS  Google Scholar 

  29. Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30. https://doi.org/10.1093/nar/28.1.27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang P, Cao L, Zhou R, Yang X, Wu M. The lncRNA Neat1 promotes activation of inflammasomes in macrophages. Nat Commun. 2019;10(1):1495. https://doi.org/10.1038/s41467-019-09482-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bu D, Luo H, Jiao F, Fang S, Tan C, Liu Z, et al. Evolutionary annotation of conserved long non-coding RNAs in major mammalian species. Sci China Life Sci. 2015;58(8):787–98. https://doi.org/10.1007/s11427-015-4881-9.

    Article  CAS  PubMed  Google Scholar 

  32. Agliano F, Rathinam VA, Medvedev AE, Vanaja SK, Vella AT. Long noncoding RNAs in host-pathogen interactions. Trends Immunol. 2019;40(6):492–510. https://doi.org/10.1016/j.it.2019.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zhao P, Liu S, Zhong Z, Jiang T, Weng R, Xie M, et al. Analysis of expression profiles of long noncoding RNAs and mRNAs in brains of mice infected by rabies virus by RNA sequencing. Sci Rep. 2018;8(1):11858. https://doi.org/10.1038/s41598-018-30359-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yi Z, Li J, Gao K, Fu Y. Identifcation of differentially expressed long non-coding RNAs in CD4+ T cells response to latent tuberculosis infection. J Infect. 2014;69(6):558–68. https://doi.org/10.1016/j.jinf.2014.06.016.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Klec C, Prinz F, Pichler M. Involvement of the long noncoding RNA NEAT1 in carcinogenesis. Mol Oncol. 2019;13(1):46–60. https://doi.org/10.1002/1878-0261.12404.

    Article  CAS  PubMed  Google Scholar 

  36. Ma H, Han P, Ye W, Chen H, Zheng X, Cheng L, et al. The Long noncoding RNA Neat1 exerts antihantaviral effects by Acting as positive feedback for RIG-I signaling. J Virol. 2017;91(9):e02250-e2316. https://doi.org/10.1128/JVI.02250-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to all of the laboratory members for their assistance.

Funding

This work was supported by the National Natural Science Foundation of China (Grant: 81571972, 82002120 and 82073466) and the National Science Foundation of Beijing, China (Grant: 7202201 and 7212105).

Author information

Authors and Affiliations

Authors

Contributions

MZ and ZX conducted the experiments and wrote the manuscript. DZ and XY collected and analyzed the data. RY and JA supervised the project. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Junhong Ao or Rongya Yang.

Ethics declarations

Conflict of interest

All authors have no conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Celia Maria de Almeida Soares.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Xia, Z., Zhang, D. et al. Use of RNA Sequencing to Perform Comprehensive Analysis of Long Noncoding RNA Expression Profiles in Macrophages Infected with Trichosporon asahii. Mycopathologia 186, 355–365 (2021). https://doi.org/10.1007/s11046-021-00552-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11046-021-00552-2

Keywords

Navigation