Skip to main content

Advertisement

Log in

A Review on Current Trends in Biogas Production from Microalgae Biomass and Microalgae Waste by Anaerobic Digestion and Co-digestion

  • Published:
BioEnergy Research Aims and scope Submit manuscript

Abstract

Microalgae are a non-food grade, fast-growing, and non-land competitive biomass with relatively high energy content. The high lipid and mineral contents of microalgae render it beneficial for the production of biofuels and value-added products. The complete energy-effective harnessing of microalgae potentials concerning biodiesel production is faced with drawbacks because of the energy-intensive steps required to harvest and dry microalgae. The limitations have impelled the search for alternative and low-cost utilization of microalgae in wet form for biofuel production. Anaerobic digestion (AD) is among the wet techniques for the valorization of microalgae that is gaining immense research attention because of its simplicity. Also, the products can be recycled to reduce material costs. This review is focused on the recent trends and comparison of the AD process to maximize energy recovery from microalgae biomass and co-digestion of microalgae waste coupled to biodiesel production (after lipid extraction), respectively. The yield of methane gas in these two processes is compared and the pros and cons of biogas production using microalgae biomass and microalgae waste considering that the former produces biofuels and the later value-added products are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Availability of Data and Materials

Not available

References

  1. Adinurani PG, Hendroko SR, Wahono SK, Nindita A, Mairziwan M, Sasmito A, Nugroho YA, Liwang T (2015) The performance of Jatropha Curcas Linn. capsule husk as feedstocks biogas in one phase anaerobic digestion. Procedia Chem 14:316–325. https://doi.org/10.1016/j.proche.2015.03.044

    Article  CAS  Google Scholar 

  2. Yang Z, Guo R, Xu X, Fan X, Luo S (2011) Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int J Hydrogen Energy 36:3465–3470. https://doi.org/10.1016/j.ijhydene.2010.12.018

  3. Xia A, Murphy JD (2016) Microalgal cultivation in treating liquid digestate from biogas systems. Trends Biotechnol 34:264–275. https://doi.org/10.1016/j.tibtech.2015.12.010

    Article  CAS  PubMed  Google Scholar 

  4. Passos F, Ferrer I (2014) Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res 68:364–373. https://doi.org/10.1016/j.watres.2014.10.015

    Article  CAS  Google Scholar 

  5. Klassen V, Blifernez-Klassen O, Wobbe L, Schlüter A, Kruse O, Mussgnug JH (2016) Efficiency and biotechnological aspects of biogas production from microalgal substrates. J Biotechnol 234:7–26. https://doi.org/10.1016/j.jbiotec.2016.07.015

    Article  CAS  PubMed  Google Scholar 

  6. Brémond U, Bertrandias A, Steyer JP, Bernet N, Carrere H (2021) A vision of European biogas sector development towards 2030: trends and challenges. J Clean Prod 287:125065. https://doi.org/10.1016/j.jclepro.2020.125065

    Article  Google Scholar 

  7. Erkelens M, Ward AJ, Ball AS, Lewis DM (2014) Microalgae digestate effluent as a growth medium for Tetraselmis sp. in the production of biofuels. Bioresour Technol 167:81–86. https://doi.org/10.1016/j.biortech.2014.05.126

    Article  CAS  PubMed  Google Scholar 

  8. Ward AJ, Lewis DM, Green FB (2014) Anaerobic digestion of algae biomass: a review. Algal Res 5:204–214. https://doi.org/10.1016/j.algal.2014.02.001

    Article  Google Scholar 

  9. Bahadar A, Bilal Khan M (2013) Progress in energy from microalgae: a review. Renew Sust Energ Rev 27:128–148. https://doi.org/10.1016/j.rser.2013.06.029

    Article  CAS  Google Scholar 

  10. Lam MK, Lee KT (2012) Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv 30:673–690. https://doi.org/10.1016/j.biotechadv.2011.11.008

    Article  CAS  PubMed  Google Scholar 

  11. Passos F, Felix L, Rocha H, Pereira J d O, de Aquino S (2016) Reuse of microalgae grown in full-scale wastewater treatment ponds: thermochemical pretreatment and biogas production. Bioresour Technol 209:305–312. https://doi.org/10.1016/j.biortech.2016.03.006

    Article  CAS  PubMed  Google Scholar 

  12. Wang L, Liu J, Zhao Q, Wei W, Sun Y (2016) Comparative study of wastewater treatment and nutrient recycle via activated sludge, microalgae and combination systems. Bioresour Technol 211:1–5. https://doi.org/10.1016/j.biortech.2016.03.048

    Article  CAS  PubMed  Google Scholar 

  13. Khalid AAH, Yaakob Z, Abdullah SRS, Takriff MS (2016) Enhanced growth and nutrients removal efficiency of Characium sp. cultured in agricultural wastewater via acclimatized inoculum and effluent recycling. J Environ Chem Eng 4:3426–3432. https://doi.org/10.1016/j.jece.2016.07.020

    Article  CAS  Google Scholar 

  14. Park JBK, Craggs RJ, Shilton AN (2011) Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol 102:35–42. https://doi.org/10.1016/j.biortech.2010.06.158

    Article  CAS  PubMed  Google Scholar 

  15. Vargas-Estrada L, Longoria A, Arias DM, Okoye PU, Sebastian PJ (2020) Role of nanoparticles on microalgal cultivation: a review. Fuel 280. https://doi.org/10.1016/j.fuel.2020.118598

  16. Golueke CG, Oswald WJ, Gotaas HB (1957) Anaerobic digestion of algae. Appl Microbiol 5:47–55

    Article  CAS  Google Scholar 

  17. Passos F, Hom-Diaz A, Blanquez P, Vicent T, Ferrer I (2016) Improving biogas production from microalgae by enzymatic pretreatment. Bioresour Technol 199:347–351. https://doi.org/10.1016/j.biortech.2015.08.084

    Article  CAS  PubMed  Google Scholar 

  18. Jain S, Jain S, Wolf IT, Lee J, Tong YW (2015) A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste. Renew Sust Energ Rev 52:142–154. https://doi.org/10.1016/j.rser.2015.07.091

    Article  Google Scholar 

  19. Li Y, Chen Y, Wu J (2019) Enhancement of methane production in anaerobic digestion process: a review. Appl Energy 240:120–137. https://doi.org/10.1016/J.APENERGY.2019.01.243

    Article  CAS  Google Scholar 

  20. Zhang T, Mao C, Zhai N, Wang X, Yang G (2015) Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk. Waste Manag 35:119–126. https://doi.org/10.1016/J.WASMAN.2014.09.004

    Article  PubMed  Google Scholar 

  21. Carotenuto C, Guarino G, D’Amelia LI, Morrone B, Minale M (2020) The peculiar role of C/N and initial pH in anaerobic digestion of lactating and non-lactating water buffalo manure. Waste Manag 103:12–21. https://doi.org/10.1016/J.WASMAN.2019.12.008

    Article  CAS  PubMed  Google Scholar 

  22. Srisowmeya G, Chakravarthy M, Nandhini Devi G (2020) Critical considerations in two-stage anaerobic digestion of food waste – a review. Renew Sust Energ Rev 119:109587. https://doi.org/10.1016/J.RSER.2019.109587

    Article  CAS  Google Scholar 

  23. Zhai N, Zhang T, Yin D, Yang G, Wang X, Ren G, Feng Y (2015) Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure. Waste Manag 38:126–131. https://doi.org/10.1016/j.wasman.2014.12.027

    Article  CAS  PubMed  Google Scholar 

  24. Marchetti R, Vasmara C (2020) Co-digestion of deproteinized dairy waste with pig slurry: effect of recipe and initial pH on biogas and volatile fatty acid production. Bioenergy Res 13:643–658. https://doi.org/10.1007/s12155-019-10055-0

    Article  CAS  Google Scholar 

  25. Ponsá S, Ferrer I, Vázquez F, Font X (2008) Optimization of the hydrolytic–acidogenic anaerobic digestion stage (55 °C) of sewage sludge: Influence of pH and solid content. Water Res 42:3972–3980. https://doi.org/10.1016/J.WATRES.2008.07.002

    Article  PubMed  Google Scholar 

  26. Gunes B, Stokes J, Davis P, Connolly C, Lawler J (2019) Pre-treatments to enhance biogas yield and quality from anaerobic digestion of whiskey distillery and brewery wastes: a review. Renew Sust Energ Rev 113:109281. https://doi.org/10.1016/J.RSER.2019.109281

    Article  CAS  Google Scholar 

  27. Dalkilic K, Ugurlu A (2015) Biogas production from chicken manure at different organic loading rates in a mesophilic-thermopilic two stage anaerobic system. J Biosci Bioeng 120:315–322. https://doi.org/10.1016/j.jbiosc.2015.01.021

    Article  CAS  PubMed  Google Scholar 

  28. Akunna JC, Hierholtzer A (2016) Co-digestion of terrestrial plant biomass with marine macro-algae for biogas production. Biomass Bioenergy 93:137–143. https://doi.org/10.1016/j.biombioe.2016.07.016

    Article  CAS  Google Scholar 

  29. Yun Y-M, Sung S, Choi J-S, Kim D-H (2016) Two-stage co-fermentation of lipid-extracted microalgae waste with food waste leachate: a viable way to reduce the inhibitory effect of leftover organic solvent and recover additional energy. Int J Hydrog Energy:1–7. https://doi.org/10.1016/j.ijhydene.2016.07.096

  30. Ajeej A, Thanikal JV, Narayanan CM, Senthil Kumar R (2015) An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper. Renew Sust Energ Rev 50:270–276. https://doi.org/10.1016/j.rser.2015.04.121

    Article  CAS  Google Scholar 

  31. Park S, Li Y (2012) Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour Technol 111:42–48. https://doi.org/10.1016/j.biortech.2012.01.160

    Article  CAS  PubMed  Google Scholar 

  32. Passos F, Uggetti E, Carrère H, Ferrer I (2014) Pretreatment of microalgae to improve biogas production: a review. Bioresour Technol 172:403–412. https://doi.org/10.1016/j.biortech.2014.08.114

    Article  CAS  PubMed  Google Scholar 

  33. Maurya R, Paliwal C, Ghosh T, Pancha I, Chokshi K, Mitra M, Ghosh A, Mishra S (2016) Applications of de-oiled microalgal biomass towards development of sustainable biorefinery. Bioresour Technol 214:787–796. https://doi.org/10.1016/j.biortech.2016.04.115

    Article  CAS  PubMed  Google Scholar 

  34. Jankowska E, Sahu AK, Oleskowicz-Popiel P (2017) Biogas from microalgae: Review on microalgae’s cultivation, harvesting and pretreatment for anaerobic digestion. Renew Sust Energ Rev 75:692–709. https://doi.org/10.1016/J.RSER.2016.11.045

    Article  CAS  Google Scholar 

  35. Hom-Diaz A, Passos F, Ferrer I, Vicent T, Blánquez P (2016) Enzymatic pretreatment of microalgae using fungal broth from Trametes versicolor and commercial laccase for improved biogas production. Algal Res 19:184–188. https://doi.org/10.1016/j.algal.2016.08.006

    Article  Google Scholar 

  36. He S, Fan X, Katukuri NR, Yuan X, Wang F, Guo R-B (2016) Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment. Bioresour Technol 204:145–151. https://doi.org/10.1016/j.biortech.2015.12.073

    Article  CAS  PubMed  Google Scholar 

  37. Scarcelli PG, Serejo ML, Paulo PL, Boncz MÁ (2020) Evaluation of biomethanization during co-digestion of thermally pretreated microalgae and waste activated sludge, and estimation of its kinetic parameters. Sci Total Environ 706:135745. https://doi.org/10.1016/j.scitotenv.2019.135745

    Article  CAS  PubMed  Google Scholar 

  38. Solé-Bundó M, Eskicioglu C, Garfí M, Carrère H, Ferrer I (2017) Anaerobic co-digestion of microalgal biomass and wheat straw with and without thermo-alkaline pretreatment. Bioresour Technol 237:89–98. https://doi.org/10.1016/j.biortech.2017.03.151

    Article  CAS  PubMed  Google Scholar 

  39. Xiao C, Liao Q, Fu Q, Huang Y, Chen H, Zhang H, Xia A, Zhu X, Reungsang A, Liu Z (2019) A solar-driven continuous hydrothermal pretreatment system for biomethane production from microalgae biomass. Appl Energy 236:1011–1018. https://doi.org/10.1016/j.apenergy.2018.12.014

    Article  CAS  Google Scholar 

  40. Cho S, Park S, Seon J, Yu J, Lee T (2013) Evaluation of thermal, ultrasonic and alkali pretreatments on mixed-microalgal biomass to enhance anaerobic methane production. Bioresour Technol 143:330–336. https://doi.org/10.1016/j.biortech.2013.06.017

    Article  CAS  PubMed  Google Scholar 

  41. Alzate ME, Muñoz R, Rogalla F, Fdz-Polanco F, Pérez-Elvira SI (2014) Biochemical methane potential of microalgae biomass after lipid extraction. Chem Eng J 243:405–410. https://doi.org/10.1016/j.cej.2013.07.076

    Article  CAS  Google Scholar 

  42. Cardeña R, Moreno G, Bakonyi P, Buitrón G (2017) Enhancement of methane production from various microalgae cultures via novel ozonation pretreatment. Chem Eng J 307:948–954. https://doi.org/10.1016/j.cej.2016.09.016

    Article  CAS  Google Scholar 

  43. Rincón-Pérez J, Razo-Flores E, Morales M, Alatriste-Mondragón F, Celis LB (2020) Improving the biodegradability of Scenedesmus obtusiusculus by thermochemical pretreatment to produce hydrogen and methane. Bioenergy Res 13:477–486. https://doi.org/10.1007/s12155-019-10067-w

    Article  CAS  Google Scholar 

  44. Bai X, Lant PA, Jensen PD, Astals S, Pratt S (2016) Enhanced methane production from algal digestion using free nitrous acid pre-treatment. Renew Energy 88:383–390. https://doi.org/10.1016/j.renene.2015.11.054

    Article  CAS  Google Scholar 

  45. Xia A, Jacob A, Tabassum MR, Herrmann C, Murphy JD (2016) Production of hydrogen, ethanol and volatile fatty acids through co-fermentation of macro- and micro-algae. Bioresour Technol 205:118–125. https://doi.org/10.1016/j.biortech.2016.01.025

    Article  CAS  PubMed  Google Scholar 

  46. Córdova O, Santis J, Ruiz-Fillipi G, Zuñiga ME, Fermoso FG, Chamy R (2018) Microalgae digestive pretreatment for increasing biogas production. Renew Sust Energ Rev 82:2806–2813. https://doi.org/10.1016/j.rser.2017.10.005

    Article  CAS  Google Scholar 

  47. Gruber-Brunhumer MR, Jerney J, Zohar E, Nussbaumer M, Hieger C, Bromberger P, Bochmann G, Jirsa F, Schagerl M, Obbard JP, Fuchs W, Drosg B (2016) Associated effects of storage and mechanical pre-treatments of microalgae biomass on biomethane yields in anaerobic digestion. Biomass Bioenergy 93:259–268. https://doi.org/10.1016/j.biombioe.2016.07.013

    Article  CAS  Google Scholar 

  48. Neves VT d C, Sales EA, Perelo LW (2016) Influence of lipid extraction methods as pre-treatment of microalgal biomass for biogas production. Renew Sust Energ Rev 59:160–165. https://doi.org/10.1016/j.rser.2015.12.303

    Article  CAS  Google Scholar 

  49. Solé-Bundó M, Passos F, Romero-Güiza MS, Ferrer I, Astals S (2019) Co-digestion strategies to enhance microalgae anaerobic digestion: a review. Renew Sust Energ Rev 112:471–482. https://doi.org/10.1016/j.rser.2019.05.036

    Article  CAS  Google Scholar 

  50. Bohutskyi P, Ketter B, Chow S, Adams KJ, Betenbaugh MJ, Allnutt FCT, Bouwer EJ (2015) Anaerobic digestion of lipid-extracted Auxenochlorella protothecoides biomass for methane generation and nutrient recovery. Bioresour Technol 183:229–239. https://doi.org/10.1016/j.biortech.2015.02.012

    Article  CAS  PubMed  Google Scholar 

  51. Frigon JC, Matteau-Lebrun F, Hamani Abdou R, McGinn PJ, O’Leary SJB, Guiot SR (2013) Screening microalgae strains for their productivity in methane following anaerobic digestion. Appl Energy 108:100–107. https://doi.org/10.1016/j.apenergy.2013.02.051

    Article  CAS  Google Scholar 

  52. Neumann P, Torres A, Fermoso FG, Borja R, Jeison D (2015) Anaerobic co-digestion of lipid-spent microalgae with waste activated sludge and glycerol in batch mode. Int Biodeterior Biodegrad 100:85–88. https://doi.org/10.1016/j.ibiod.2015.01.020

    Article  CAS  Google Scholar 

  53. Bohutskyi P, Kula T, Kessler BA, Hong Y, Bouwer EJ, Betenbaugh MJ, Allnutt FCT (2014) Mixed trophic state production process for microalgal biomass with high lipid content for generating biodiesel and biogas. Bioenergy Res 7:1174–1185. https://doi.org/10.1007/s12155-014-9453-5

    Article  CAS  Google Scholar 

  54. Bohutskyi P, Chow S, Ketter B, Fung Shek C, Yacar D, Tang Y, Zivojnovich M, Betenbaugh MJ, Bouwer EJ (2016) Phytoremediation of agriculture runoff by filamentous algae poly-culture for biomethane production, and nutrient recovery for secondary cultivation of lipid generating microalgae. Bioresour Technol 222:294–308. https://doi.org/10.1016/j.biortech.2016.10.013

    Article  CAS  PubMed  Google Scholar 

  55. Ehimen EA, Connaughton S, Sun Z, Carrington GC (2009) Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy 1:371–381. https://doi.org/10.1111/j.1757-1707.2009.01029.x

    Article  CAS  Google Scholar 

  56. Mahdy A, Mendez L, Ballesteros M, González-Fernández C (2015) Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel 158:35–41. https://doi.org/10.1016/J.FUEL.2015.04.052

    Article  CAS  Google Scholar 

  57. Yun YM, Cho SK, Jung KW, Kim MS, Shin HS, Kim DH (2014) Inhibitory effect of chloroform on fermentative hydrogen and methane production from lipid-extracted microalgae. Int J Hydrog Energy 39:19256–19261. https://doi.org/10.1016/j.ijhydene.2014.04.167

    Article  CAS  Google Scholar 

  58. Sforza E, Barbera E, Girotto F, Cossu R, Bertucco A (2017) Anaerobic digestion of lipid-extracted microalgae: enhancing nutrient recovery towards a closed loop recycling. Biochem Eng J 121:139–146. https://doi.org/10.1016/j.bej.2017.02.004

    Article  CAS  Google Scholar 

  59. Zhao B, Ma J, Zhao Q, Laurens L, Jarvis E, Chen S, Frear C (2014) Efficient anaerobic digestion of whole microalgae and lipid-extracted microalgae residues for methane energy production. Bioresour Technol 161:423–430. https://doi.org/10.1016/j.biortech.2014.03.079

    Article  CAS  PubMed  Google Scholar 

  60. Bohutskyi P, Chow S, Ketter B, Betenbaugh MJ, Bouwer EJ (2015) Prospects for methane production and nutrient recycling from lipid extracted residues and whole Nannochloropsis salina using anaerobic digestion. Appl Energy 154:718–731. https://doi.org/10.1016/j.apenergy.2015.05.069

    Article  CAS  Google Scholar 

  61. Ramos-Suárez JL, Carreras N (2014) Use of microalgae residues for biogas production. Chem Eng J 242:86–95. https://doi.org/10.1016/j.cej.2013.12.053

    Article  CAS  Google Scholar 

  62. Hernández D, Solana M, Riaño B, García-González MC, Bertucco A (2014) Biofuels from microalgae: lipid extraction and methane production from the residual biomass in a biorefinery approach. Bioresour Technol 170:370–378. https://doi.org/10.1016/j.biortech.2014.07.109

    Article  CAS  PubMed  Google Scholar 

  63. Sumprasit N, Wagle N, Glanpracha N, Annachhatre AP (2016) Biodiesel and biogas recovery from Spirulina platensis. Int Biodeterior Biodegradation 119:196–204. https://doi.org/10.1016/j.ibiod.2016.11.006

    Article  CAS  Google Scholar 

  64. Ward A, Lewis D (2015) Pre-treatment options for halophytic microalgae and associated methane production. Bioresour Technol 177:410–413. https://doi.org/10.1016/j.biortech.2014.11.114

    Article  CAS  PubMed  Google Scholar 

  65. Capson-Tojo G, Torres A, Muñoz R, Bartacek J, Jeison D (2017) Mesophilic and thermophilic anaerobic digestion of lipid-extracted microalgae N. gaditana for methane production. Renew Energy 105:539–546. https://doi.org/10.1016/j.renene.2016.12.052

    Article  CAS  Google Scholar 

  66. Fang C, Boe K, Angelidaki I (2011) Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. Bioresour Technol 102:5734–5741. https://doi.org/10.1016/j.biortech.2011.03.013

    Article  CAS  PubMed  Google Scholar 

  67. Choong YY, Chou KW, Norli I (2018) Strategies for improving biogas production of palm oil mill effluent (POME) anaerobic digestion: a critical review. Renew Sust Energ Rev 82:2993–3006. https://doi.org/10.1016/j.rser.2017.10.036

    Article  CAS  Google Scholar 

  68. Khalid A, Arshad M, Anjum M, Mahmood T, Dawson L (2011) The anaerobic digestion of solid organic waste. Waste Manag 31:1737–1744. https://doi.org/10.1016/j.wasman.2011.03.021

    Article  CAS  PubMed  Google Scholar 

  69. Cook SM, Skerlos SJ, Raskin L, Love NG (2017) A stability assessment tool for anaerobic codigestion. Water Res 112:19–28. https://doi.org/10.1016/j.watres.2017.01.027

    Article  CAS  PubMed  Google Scholar 

  70. Cabbai V, De Bortoli N, Goi D (2016) Pilot plant experience on anaerobic codigestion of source selected OFMSW and sewage sludge. Waste Manag 49:47–54. https://doi.org/10.1016/J.WASMAN.2015.12.014

    Article  CAS  PubMed  Google Scholar 

  71. Suksong W, Kongjan P, O-Thong S, (2015) Biohythane production from co-digestion of palm oil mill effluent with solid residues by two-stage solid state anaerobic digestion process. Energy Procedia 79:943–949

    Article  CAS  Google Scholar 

  72. Astals S, Musenze RS, Bai X, Tannock S, Tait S, Pratt S, Jensen PD (2015) Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance. Bioresour Technol 181:97–104. https://doi.org/10.1016/J.BIORTECH.2015.01.039

    Article  CAS  PubMed  Google Scholar 

  73. Mahdy A, Fotidis IA, Mancini E, Ballesteros M, González-Fernández C, Angelidaki I (2017) Ammonia tolerant inocula provide a good base for anaerobic digestion of microalgae in third generation biogas process. Bioresour Technol 225:272–278. https://doi.org/10.1016/j.biortech.2016.11.086

    Article  CAS  PubMed  Google Scholar 

  74. Wang M, Park C (2015) Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. Biomass Bioenergy 80:30–37. https://doi.org/10.1016/J.BIOMBIOE.2015.04.028

    Article  CAS  Google Scholar 

  75. Wang M, Sahu AK, Rusten B, Park C (2013) Anaerobic co-digestion of microalgae Chlorella sp. and waste activated sludge. Bioresour Technol 142:585–590. https://doi.org/10.1016/j.biortech.2013.05.096

    Article  CAS  PubMed  Google Scholar 

  76. Li R, Duan N, Zhang Y, Liu Z, Li B, Zhang D, Dong T (2017) Anaerobic co-digestion of chicken manure and microalgae Chlorella sp.: methane potential, microbial diversity and synergistic impact evaluation. Waste Manag 68:120–127. https://doi.org/10.1016/j.wasman.2017.06.028

    Article  CAS  PubMed  Google Scholar 

  77. Wang M, Lee E, Zhang Q, Ergas SJ (2016) Anaerobic co-digestion of swine manure and microalgae Chlorella sp.: experimental studies and energy analysis. Bioenergy Res 9:1204–1215. https://doi.org/10.1007/s12155-016-9769-4

    Article  Google Scholar 

  78. Zhang Y, Caldwell GS, Zealand AM, Sallis PJ (2019) Anaerobic co-digestion of microalgae Chlorella vulgaris and potato processing waste: effect of mixing ratio, waste type and substrate to inoculum ratio. Biochem Eng J 143:91–100. https://doi.org/10.1016/j.bej.2018.12.021

    Article  CAS  Google Scholar 

  79. Olsson J, Feng XM, Ascue J, Gentili FG, Shabiimam MA, Nehrenheim E, Thorin E (2014) Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment. Bioresour Technol 171:203–210. https://doi.org/10.1016/j.biortech.2014.08.069

    Article  CAS  PubMed  Google Scholar 

  80. Arias DM, Solé-Bundó M, Garfí M, Ferrer I, García J, Uggetti E (2018) Integrating microalgae tertiary treatment into activated sludge systems for energy and nutrients recovery from wastewater. Bioresour Technol 247:513–519. https://doi.org/10.1016/j.biortech.2017.09.123

    Article  CAS  PubMed  Google Scholar 

  81. Zhen G, Lu X, Kobayashi T, Kumar G, Xu K (2016) Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: kinetic modeling and synergistic impact evaluation. Chem Eng J 299:332–341. https://doi.org/10.1016/j.cej.2016.04.118

    Article  CAS  Google Scholar 

  82. Serna-García R, Zamorano-López N, Seco A, Bouzas A (2020) Co-digestion of harvested microalgae and primary sludge in a mesophilic anaerobic membrane bioreactor (AnMBR): methane potential and microbial diversity. Bioresour Technol 298:122521. https://doi.org/10.1016/j.biortech.2019.122521

    Article  CAS  PubMed  Google Scholar 

  83. Vassalle L, Díez-Montero R, Machado ATR, Moreira C, Ferrer I, Mota CR, Passos F (2020) Upflow anaerobic sludge blanket in microalgae-based sewage treatment: co-digestion for improving biogas production. Bioresour Technol 300:122677. https://doi.org/10.1016/j.biortech.2019.122677

    Article  CAS  PubMed  Google Scholar 

  84. Xu Y, Lu Y, Zheng L, Wang Z, Dai X (2019) Perspective on enhancing the anaerobic digestion of waste activated sludge. J Hazard Mater 389:121847. https://doi.org/10.1016/J.JHAZMAT.2019.121847

    Article  PubMed  Google Scholar 

  85. Uggetti E, Sialve B, Latrille E, Steyer J-P (2014) Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresour Technol 152:437–443. https://doi.org/10.1016/j.biortech.2013.11.036

    Article  CAS  PubMed  Google Scholar 

  86. Prandini JM, da Silva MLB, Mezzari MP, Pirolli M, Michelon W, Soares HM (2016) Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp. Bioresour Technol 202:67–75. https://doi.org/10.1016/j.biortech.2015.11.082

    Article  CAS  PubMed  Google Scholar 

  87. Franchino M, Tigini V, Varese GC, Mussat Sartor R, Bona F (2016) Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate. Sci Total Environ 569:40–45. https://doi.org/10.1016/j.scitotenv.2016.06.100

    Article  CAS  PubMed  Google Scholar 

  88. Halfhide T, Dalrymple OK, Wilkie AC, Trimmer J, Gillie B, Udom I, Zhang Q, Ergas SJ (2015) Growth of an indigenous algal consortium on anaerobically digested municipal sludge centrate: photobioreactor performance and modeling. Bioenergy Res 8:249–258. https://doi.org/10.1007/s12155-014-9513-x

    Article  CAS  Google Scholar 

  89. Passero M, Cragin B, Coats ER, McDonald AG, Feris K (2015) Dairy Wastewaters for algae cultivation, polyhydroxyalkanote reactor effluent versus anaerobic digester effluent. Bioenergy Res 8:1647–1660. https://doi.org/10.1007/s12155-015-9619-9

    Article  CAS  Google Scholar 

  90. Chaiprapat S, Sasibunyarat T, Charnnok B, Cheirsilp B (2017) Intensifying clean energy production through cultivating mixotrophic microalgae from digestates of biogas systems: effects of light intensity, medium dilution, and cultivating time. Bioenergy Res 10:103–114. https://doi.org/10.1007/s12155-016-9780-9

    Article  CAS  Google Scholar 

  91. Chen C-Y, Zhao X-Q, Yen H-W, Ho S-H, Cheng C-L, Lee D-J, Bai F-W, Chang J-S (2013) Microalgae-based carbohydrates for biofuel production. Biochem Eng J 78:1–10. https://doi.org/10.1016/j.bej.2013.03.006

    Article  CAS  Google Scholar 

  92. Mussgnug JH, Klassen V, Schlüter A, Kruse O (2010) Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J Biotechnol 150:51–56. https://doi.org/10.1016/j.jbiotec.2010.07.030

    Article  CAS  PubMed  Google Scholar 

  93. Xia A, Cheng J, Ding L, Lin R, Song W, Zhou J, Cen K (2014) Enhancement of energy production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and methanogenesis. Appl Energy 120:23–30. https://doi.org/10.1016/j.apenergy.2014.01.045

    Article  CAS  Google Scholar 

  94. Zhou M, Yan B, Wong JWC, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Bioresour Technol 248:68–78. https://doi.org/10.1016/J.BIORTECH.2017.06.121

    Article  CAS  PubMed  Google Scholar 

  95. Qiu Y, Frear C, Chen S, Ndegwa P, Harrison J, Yao Y, Ma J (2020) Accumulation of long-chain fatty acids from Nannochloropsis salina enhanced by breaking microalgae cell wall under alkaline digestion. Renew Energy 149:691–700. https://doi.org/10.1016/j.renene.2019.12.093

    Article  CAS  Google Scholar 

  96. Wang Y, Liu X, Liu Y, Wang D, Xu Q, Li X, Yang Q, Wang Q, Ni BJ, Chen H (2020) Enhancement of short-chain fatty acids production from microalgae by potassium ferrate addition: feasibility, mechanisms and implications. Bioresour Technol 318:124266. https://doi.org/10.1016/j.biortech.2020.124266

    Article  CAS  PubMed  Google Scholar 

  97. Perez-Sanz FJ, Sarge SM, van der Veen A, Culleton L, Beaumont O, Haloua F (2019) First experimental comparison of calorific value measurements of real biogas with reference and field calorimeters subjected to different standard methods. Int J Therm Sci 135:72–82. https://doi.org/10.1016/j.ijthermalsci.2018.06.034

    Article  CAS  Google Scholar 

  98. Bose A, Lin R, Rajendran K, O’Shea R, Xia A, Murphy JD (2019) How to optimise photosynthetic biogas upgrading: a perspective on system design and microalgae selection. Biotechnol Adv 107444:107444. https://doi.org/10.1016/J.BIOTECHADV.2019.107444

    Article  Google Scholar 

  99. Srinuanpan S, Cheirsilp B, Boonsawang P, Prasertsan P (2019) Immobilized oleaginous microalgae as effective two-phase purify unit for biogas and anaerobic digester effluent coupling with lipid production. Bioresour Technol 281:149–157. https://doi.org/10.1016/J.BIORTECH.2019.02.085

    Article  CAS  PubMed  Google Scholar 

  100. Meier L, Pérez R, Azócar L, Rivas M, Jeison D (2015) Photosynthetic CO2 uptake by microalgae: an attractive tool for biogas upgrading. Biomass Bioenergy 73:102–109. https://doi.org/10.1016/J.BIOMBIOE.2014.10.032

    Article  CAS  Google Scholar 

  101. Yan C, Zhu L, Wang Y (2016) Photosynthetic CO2 uptake by microalgae for biogas upgrading and simultaneously biogas slurry decontamination by using of microalgae photobioreactor under various light wavelengths, light intensities, and photoperiods. Appl Energy 178:9–18. https://doi.org/10.1016/j.apenergy.2016.06.012

    Article  CAS  Google Scholar 

  102. Zhao Y, Guo G, Sun S, Hu C, Liu J (2019) Co-pelletization of microalgae and fungi for efficient nutrient purification and biogas upgrading. Bioresour Technol 289:121656. https://doi.org/10.1016/j.biortech.2019.121656

    Article  CAS  PubMed  Google Scholar 

  103. Setyobudi RH, Wahono SK, Nindita A, Adinurani PG, Nugroho YA, Sasmito A, Liwang T (2015) Biological purification system: integrated biogas from small anaerobic digestion and natural microalgae. Procedia Chem 14:387–393. https://doi.org/10.1016/j.proche.2015.03.069

    Article  CAS  Google Scholar 

  104. Marín D, Ortíz A, Díez-Montero R, Uggetti E, García J, Lebrero R, Muñoz R (2019) Influence of liquid-to-biogas ratio and alkalinity on the biogas upgrading performance in a demo scale algal-bacterial photobioreactor. Bioresour Technol 280:112–117. https://doi.org/10.1016/J.BIORTECH.2019.02.029

    Article  PubMed  Google Scholar 

  105. Posadas E, Morales M d M, Gomez C, Acién FG, Muñoz R (2015) Influence of pH and CO2 source on the performance of microalgae-based secondary domestic wastewater treatment in outdoors pilot raceways. Chem Eng J 265:239–248. https://doi.org/10.1016/J.CEJ.2014.12.059

    Article  CAS  Google Scholar 

  106. Posadas E, Serejo ML, Blanco S, Pérez R, García-Encina PA, Muñoz R (2015) Minimization of biomethane oxygen concentration during biogas upgrading in algal–bacterial photobioreactors. Algal Res 12:221–229. https://doi.org/10.1016/J.ALGAL.2015.09.002

    Article  Google Scholar 

  107. Lu D, Zhang X(J), Liu X, Zhang L, Hines M (2018) Sustainable microalgae cultivation by using anaerobic centrate and biogas from anaerobic digestion. Algal Res 35:115–124. https://doi.org/10.1016/j.algal.2018.08.028

    Article  Google Scholar 

  108. Posadas E, Szpak D, Lombó F, Domínguez A, Díaz I, Blanco S, García-Encina PA, Muñoz R (2016) Feasibility study of biogas upgrading coupled with nutrient removal from anaerobic effluents using microalgae-based processes. J Appl Phycol 28:2147–2157. https://doi.org/10.1007/s10811-015-0758-3

    Article  CAS  Google Scholar 

  109. Posadas E, Marín D, Blanco S, Lebrero R, Muñoz R (2017) Simultaneous biogas upgrading and centrate treatment in an outdoors pilot scale high rate algal pond. Bioresour Technol 232:133–141. https://doi.org/10.1016/j.biortech.2017.01.071

    Article  CAS  PubMed  Google Scholar 

  110. Marín D, Posadas E, Cano P, Pérez V, Blanco S, Lebrero R, Muñoz R (2018) Seasonal variation of biogas upgrading coupled with digestate treatment in an outdoors pilot scale algal-bacterial photobioreactor. Bioresour Technol 263:58–66. https://doi.org/10.1016/j.biortech.2018.04.117

    Article  CAS  PubMed  Google Scholar 

  111. The International Renewable Energy Agency (2020) Renewable energy statistics 2020. Abu Dhabi

Download references

Funding

Laura Vargas acknowledges the CONACYT for the Ph.D. scholarship CVU 640397. The authors would like to acknowledge the financial support given by DGAPA-UNAM under Project Nos. IA203320 and IN 109319 and CONACYT under Project No. 424.

Author information

Authors and Affiliations

Authors

Contributions

Laura Vargas-Estrada: Literature survey and writing; Emilio Arenas: Literature survey; Adriana Longoria: Writing, review, and editing; Yaneth Bustos-Terrones: Review; Patrick U. Okoye: Writing, review, and editing; P.J. Sebastian: Writing, review, editing, and supervision. Joel Moreira: Review.

Corresponding authors

Correspondence to Adriana Longoria or P. J. Sebastian.

Ethics declarations

Ethics Approval and Consent to Participate

Authors agree to the ethics of publication and consent to participate.

Consent for Publication

Authors agree to the consent for publication.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vargas-Estrada, L., Longoria, A., Arenas, E. et al. A Review on Current Trends in Biogas Production from Microalgae Biomass and Microalgae Waste by Anaerobic Digestion and Co-digestion. Bioenerg. Res. 15, 77–92 (2022). https://doi.org/10.1007/s12155-021-10276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12155-021-10276-2

Keywords

Navigation