Skip to main content
Log in

Comprehensive Probabilistic Tsunami Hazard Assessment in the Makran Subduction Zone

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In the wake of the unprecedented disaster caused by the 2004 and 2011 tsunamis, efforts by the scientific community have highlighted the important role of probabilistic tsunami hazard assessment (PTHA) in tsunami-prone areas. The Makran subduction zone (MSZ) is a hazardous tsunami-prone region; however, due to its low population density, it is not as prominent in the literature. In this study, we assess the threat a tsunami hazard poses to the coast of Iran and Pakistan by the MSZ and present a comprehensive PTHA for the entire coast regardless of population density. We accounted for sources of epistemic uncertainties by employing event tree and ensemble modeling. Aleatory variability was also considered through the probability density function. Further, we considered the contribution of small to large magnitudes and used our event trees to create a multitude of scenarios as initial conditions. Funwave-TVD was employed to propagate these scenarios. Our results demonstrate that the spread of hazard curves for different locations on the coast is remarkably large, and the probability that a maximum wave will exceed 3 m somewhere along the coast reaches \(\{13.5, 25, 52, 74, 91\}\) for return periods \(\{50,100, 250, 500, 1000\}\), respectively. Moreover, we found that the exceedance probability could be higher at the west part of Makran for a long return period, if we consider it as active as the east part of the MSZ. Finally, we demonstrate that the contribution of aleatory variability is significant, and overlooking it leads to a significant hazard underestimation, particularly for a long return period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Many authors believe that no theoretical significance exists for this separation because, as long as our knowledge increases, all uncertainties become epistemic (Marzocchi et al., 2015).

  2. The data from these source were used to avoid uncertainties when using survey measuring methods.

  3. Note that treating Tohoku as a segmented zone led to strong underestimation of the devastating 2011 tsunami  (Kagan & Jackson, 2013).

  4. \(M_w=7.7\) is the minimum magnitude capable of causing a noticeable tsunami.

  5. We acknowledge the referee for bringing this point to our attention.

  6. For \(M_w>\) 9.3 the selected value for probability of exceedance (for the longest return period) is zero (see Sect. 3.1)

  7. The computation was carried out using the computer resource offered under the category of General Projects by Research Institute for Information Technology, Kyushu University, with 36 number of processors.

References

  • Aida, I. (1978). Reliability of a tsunami source model derived from fault parameters. Journal of Physics of the Earth, 26(1), 57–73.

    Google Scholar 

  • Akbari, P., Sadrinasab, M., Chegini, V., & Siadat Mousavi, S. (2017). Study of tidal components amplitude distribution in the persian gulf, gulf of oman and arabian sea using numerical simulation. Journal of Marine Science and Technology, 16(3), 27–41.

    Google Scholar 

  • Akbarpour Jannat, M. R., Rastgoftar, E., & Asano, T. (2017). Tsunami assessment for inundation risk management at chabahar bay facilities in iran. International Journal of Coastal and Offshore Engineering, 1(2), 27–39.

    Google Scholar 

  • Al-Lazki, A. I., Al-Damegh, K. S., El-Hadidy, S. Y., Ghods, A., & Tatar, M. (2014). Pn-velocity structure beneath arabia-eurasia zagros collision and makran subduction zones. Geological Society, London, Special Publications, 392(1), 45–60.

    Google Scholar 

  • Aldama-Bustos, G., Bommer, J., Fenton, C., & Stafford, P. (2009). Probabilistic seismic hazard analysis for rock sites in the cities of abu dhabi, dubai and ra’s al khaymah, united arab emirates. Georisk, 3(1), 1–29.

    Google Scholar 

  • Allen, T. I., Wald, D. J., & Worden, C. B. (2012). Intensity attenuation for active crustal regions. Journal of Seismology, 16(3), 409–433.

    Google Scholar 

  • Ambraseys, N., & Melville, C. (1982). A history of persian earthquakes. Cambridge Univ Press.

    Google Scholar 

  • Annaka, T., Satake, K., Sakakiyama, T., Yanagisawa, K., & Shuto, N. (2007). Logic-tree approach for probabilistic tsunami hazard analysis and its applications to the Japanese coasts. In: Tsunami and its hazards in the Indian and Pacific Oceans (pp. 577–592). Springer.

    Google Scholar 

  • Bird, P., & Kagan, Y. Y. (2004). Plate-tectonic analysis of shallow seismicity: Apparent boundary width, beta, corner magnitude, coupled lithosphere thickness, and coupling in seven tectonic settings. Bulletin of the Seismological Society of America, 94(6), 2380–2399.

    Google Scholar 

  • Blaser, L., Krüger, F., Ohrnberger, M., & Scherbaum, F. (2010). Scaling relations of earthquake source parameter estimates with special focus on subduction environment. Bulletin of the Seismological Society of America, 100(6), 2914–2926.

    Google Scholar 

  • Bommer, J. J., & Abrahamson, N. A. (2006). Why do modern probabilistic seismic-hazard analyses often lead to increased hazard estimates? Bulletin of the Seismological Society of America, 96(6), 1967–1977.

    Google Scholar 

  • Butler, R., Walsh, D., & Richards, K. (2017). Extreme tsunami inundation in hawai ‘i from aleutian-alaska subduction zone earthquakes. Natural Hazards, 85(3), 1591–1619.

    Google Scholar 

  • Christophersen, A., Berryman, K., & Litchfield, N. (2015). The GEM faulted earth project, version 1.0. GEM Faulted Earth Project. https://doi.org/10.13117/GEM.GEGD.TR2015.02.

  • Cornell, C. A. (1968). Engineering seismic risk analysis. Bulletin of the seismological society of America, 58(5), 1583–1606.

    Google Scholar 

  • Davies, G. (2019). Tsunami variability from uncalibrated stochastic earthquake models: Tests against deep ocean observations 2006–2016. Geophysical Journal International, 218(3), 1939–1960.

    Google Scholar 

  • Davies, G., & Griffin, J. (2020). Sensitivity of probabilistic tsunami hazard assessment to far-field earthquake slip complexity and rigidity depth-dependence: case study of Australia. Pure and Applied Geophysics, 177, 1521–1548. https://doi.org/10.1007/s00024-019-02299-w.

    Article  Google Scholar 

  • Davies, G., Horspool, N., & Miller, V. (2015). Tsunami inundation from heterogeneous earthquake slip distributions: Evaluation of synthetic source models. Journal of Geophysical Research: Solid Earth, 120(9), 6431–6451.

    Google Scholar 

  • Davies, G., Griffin, J., Løvholt, F., Glimsdal, S., Harbitz, C., Thio, H. K., et al. (2018). A global probabilistic tsunami hazard assessment from earthquake sources. Geological Society, London, Special Publications, 456(1), 219–244.

    Google Scholar 

  • Deif, A., & El-Hussain, I. (2012). Seismic moment rate and earthquake mean recurrence interval in the major tectonic boundaries around Oman. Journal of Geophysics and Engineering, 9(6), 773–783.

    Google Scholar 

  • Pakistan Meteorological Department (2007). Seismic hazard analysis and zonation for Pakistan, Azad Jammu and Kashmir. http://www.pmd.gov.pk/seismicreport_pmd.pdf.

  • Downes, G. L., & Stirling, M. W. (2001). Groundwork for development of a probabilistic tsunami hazard model for new Zealand. International tsunami symposium 2001, pacific marine environmental lab (pp. 293–301). Wash.

    Google Scholar 

  • El-Hussain, I., Omira, R., Deif, A., Al-Habsi, Z., Al-Rawas, G., Mohamad, A., et al. (2016). Probabilistic tsunami hazard assessment along Oman coast from submarine earthquakes in the Makran subduction zone. Arabian Journal of Geosciences, 9(15), 668.

    Google Scholar 

  • Frohling, E., & Szeliga, W. (2016). Gps constraints on interplate locking within the Makran subduction zone. Geophysical Supplements to the Monthly Notices of the Royal Astronomical Society, 205(1), 67–76.

    Google Scholar 

  • Fujii, Y., Satake, K., Sakai, S., Shinohara, M., & Kanazawa, T. (2011). Tsunami source of the 2011 off the pacific coast of Tohoku earthquake. Earth, Planets and Space, 63(7), 55.

    Google Scholar 

  • Geist, E. L., & Lynett, P. J. (2014). Source processes for the probabilistic assessment of tsunami hazards. Oceanography, 27(2), 86–93.

    Google Scholar 

  • Goda, K., Mai, P. M., Yasuda, T., & Mori, N. (2014). Sensitivity of tsunami wave profiles and inundation simulations to earthquake slip and fault geometry for the 2011 tohoku earthquake. Earth, Planets and Space, 66(1), 105.

    Google Scholar 

  • Goda, K., Mori, N., Yasuda, T., Prasetyo, A., Muhammad, A., & Tsujio, D. (2019). Cascading geological hazards and risks of the 2018 Sulawesi Indonesia earthquake and sensitivity analysis of tsunami inundation simulations. Frontiers in Earth Science, 7, 261.

    Google Scholar 

  • Grezio, A., Babeyko, A., Baptista, M. A., Behrens, J., Costa, A., Davies, G., et al. (2017). Probabilistic tsunami hazard analysis: Multiple sources and global applications. Reviews of Geophysics, 55(4), 1158–1198.

    Google Scholar 

  • Hayes, G. P., Moore, G. L., Portner, D. E., Hearne, M., Flamme, H., Furtney, M., & Smoczyk, G. M. (2018). Slab2, a comprehensive subduction zone geometry model. Science, 362(6410), 58–61.

    Google Scholar 

  • Heidarzadeh, M., & Kijko, A. (2011). A probabilistic tsunami hazard assessment for the Makran subduction zone at the northwestern Indian ocean. Natural Hazards, 56(3), 577–593.

    Google Scholar 

  • Heidarzadeh, M., & Satake, K. (2014). Possible sources of the tsunami observed in the northwestern Indian ocean following the 2013 September 24 m w 7.7 pakistan inland earthquake. Geophysical Journal International, 199(2), 752–766.

    Google Scholar 

  • Heidarzadeh, M., & Satake, K. (2017). A combined earthquake-landslide source model for the tsunami from the 27 november 1945 m w 8.1 makran earthquake. Bulletin of the Seismological Society of America, 107(2), 1033–1040.

    Google Scholar 

  • Heidarzadeh, M., Pirooz, M. D., & Zaker, N. H. (2009). Modeling the near-field effects of the worst-case tsunami in the makran subduction zone. Ocean Engineering, 36(5), 368–376.

    Google Scholar 

  • Hoechner, A., Babeyko, A. Y., & Zamora, N. (2016). Probabilistic tsunami hazard assessment for the makran region with focus on maximum magnitude assumption. Natural Hazards and Earth System Sciences (NHESS), 16, 1339–1350.

    Google Scholar 

  • Kagan, Y. Y. (2002). Seismic moment distribution revisited: I. statistical results. Geophysical Journal International, 148(3), 520–541.

    Google Scholar 

  • Kagan, Y. Y., & Jackson, D. D. (2013). Tohoku earthquake: A surprise? Bulletin of the Seismological Society of America, 103(2B), 1181–1194.

    Google Scholar 

  • Kajiura, K. (1963). The leading wave of a tsunami. Bulletin of the Earthquake Research Institute, University of Tokyo, 41(3), 535–571.

    Google Scholar 

  • Kakar, D., Naeem, G., Usman, A., Mengal, A., Naderi Beni, A., Afarin, M., et al. (2015). Remembering the 1945 Makran tsunami; interviews with survivors beside the Arabian sea. UNESCO-IOC Brochure, 1, 79.

    Google Scholar 

  • Kijko, A. (2004). Estimation of the maximum earthquake magnitude, m max. Pure and Applied Geophysics, 161(8), 1655–1681.

    Google Scholar 

  • Kijko, A., Smit, A., Sellevoll, MA. (2016) Estimation of earthquake hazard parameters from incomplete data files. Part III. Incorporation of uncertainty of earthquake-occurrence model. Bulletin of the Seismological Society of America, 106(3):1210–1222, https://doi.org/10.1785/0120150252, https://pubs.geoscienceworld.org/bssa/article-pdf/106/3/1210/3668777/1210.pdf.

  • Kirby, J.T, Wei, G., Chen, Q., Kennedy ,A.B, Dalrymple, R.A. (1998) Funwave 1.0: fully nonlinear boussinesq wave model-documentation and user’s manual. Research report NO CACR-98-06.

  • Lolli, B., Gasperini, P., & Vannucci, G. (2014). Empirical conversion between teleseismic magnitudes (mb and m s) and moment magnitude (m w) at the global, Euro-Mediterranean and Italian scale. Geophysical Journal International, 199(2), 805–828.

    Google Scholar 

  • Lorito, S., Selva, J., Basili, R., Romano, F., Tiberti, M., & Piatanesi, A. (2015). Probabilistic hazard for seismically induced tsunamis: Accuracy and feasibility of inundation maps. Geophysical Journal International, 200(1), 574–588.

    Google Scholar 

  • Løvholt, F., Pedersen, G., Bazin, S., Kühn, D., Bredesen, R. E., & Harbitz, C. (2012). Stochastic analysis of tsunami runup due to heterogeneous coseismic slip and dispersion. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2011JC007616.

    Article  Google Scholar 

  • Løvholt, F., Setiadi, N. J., Birkmann, J., Harbitz, C. B., Bach, C., Fernando, N., et al. (2014). Tsunami risk reduction-are we better prepared today than in 2004? International Journal of Disaster Risk Reduction, 10, 127–142.

    Google Scholar 

  • Løvholt, F., Griffin, J., Salgado-Gálvez, M. (2015) Tsunami hazard and risk assessment on the global scale. Encyclopedia of Complexity and Systems Science, 1–34.

  • Lynett, P., Wei, Y., & Arcas, D. R. (2016). Tsunami Hazard Assessment: Best Modeling Practices and State-of-the Art Technology. Office of Nuclear Regulatory. United States Nuclear Regulatory Commission.

    Google Scholar 

  • Marzocchi, W., Taroni, M., & Selva, J. (2015). Accounting for epistemic uncertainty in psha: Logic tree and ensemble modeling. Bulletin of the Seismological Society of America, 105(4), 2151–2159.

    Google Scholar 

  • Mori, N., Goda, K., & Cox, D. (2018). Recent process in probabilistic tsunami hazard analysis (ptha) for mega thrust subduction earthquakes. In: The 2011 Japan Earthquake and Tsunami: Reconstruction and Restoration (pp. 469–485). Springer.

    Google Scholar 

  • Mueller, C., Power, W., Fraser, S., & Wang, X. (2015). Effects of rupture complexity on local tsunami inundation: Implications for probabilistic tsunami hazard assessment by example. Journal of Geophysical Research: Solid Earth, 120(1), 488–502.

    Google Scholar 

  • Mulia, I. E., Ishibe, T., Satake, K., Gusman, A. R., & Murotani, S. (2020). Regional probabilistic tsunami hazard assessment associated with active faults along the eastern margin of the sea of japan. Earth, Planets and Space, 72(1), 1–15.

    Google Scholar 

  • Normand, R., Simpson, G., Herman, F., Biswas, R. H., & Bahroudi, A. (2019). Holocene sedimentary record and coastal evolution in the makran subduction zone (iran). Quaternary, 2(2), 21.

    Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Okal, E. A., Fritz, H. M., Hamzeh, M. A., & Ghasemzadeh, J. (2015). Field survey of the 1945 Makran and 2004 Indian ocean tsunamis in Baluchistan, Iran. Pure and Applied Geophysics, 172(12), 3343–3356.

    Google Scholar 

  • Payande, A., Niksokhan, M., & Naserian, H. (2015). Tsunami hazard assessment of Chabahar bay related to megathrust Seismogenic potential of the Makran subduction zone. Natural Hazards, 76(1), 161–176.

    Google Scholar 

  • Power, W., Wallace, L., Wang, X., & Reyners, M. (2012). Tsunami hazard posed to New Zealand by the Kermadec and southern new Hebrides subduction margins: An assessment based on plate boundary kinematics, interseismic coupling, and historical seismicity. Pure and Applied Geophysics, 169(1–2), 1–36.

    Google Scholar 

  • Rastgoftar, E., & Soltanpour, M. (2016). Study and numerical modeling of 1945 Makran tsunami due to a probable submarine landslide. Natural Hazards, 83(2), 929–945.

    Google Scholar 

  • Reasenberg, P. (1985). Second-order moment of central California seismicity, 1969–1982. Journal of Geophysical Research: Solid Earth, 90(B7), 5479–5495.

    Google Scholar 

  • Reyes, C., Wiemer, S. (2019) Zmap7, a refreshed software package to analyze seismicity. In: Geophysical Research Abstracts, vol 21

  • Rikitake, T., & Aida, I. (1988). Tsunami hazard probability in Japan. Bulletin of the Seismological Society of America, 78(3), 1268–1278.

    Google Scholar 

  • Safari A, Abolghasem A, Abedini N, Mousavi Z (2017) Assessment of optimum value for dip angle and locking rate parameters in makran subduction zone. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 42.

  • Salah, P., Soltanpour, M. (2014) Modeling of tsunami propagation and inundation at the north coast of gulf of Oman due to earthquake in makran subduction zone. International Conference on Coasts, Ports and Marine Structures (Icopmas), 11.

  • Satake, K. (2014). Advances in earthquake and tsunami sciences and disaster risk reduction since the 2004 Indian ocean tsunami. Geoscience Letters, 1(1), 15.

    Google Scholar 

  • Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D., & Grilli, S. T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43, 36–51.

    Google Scholar 

  • Smith, G. L., McNeill, L. C., Wang, K., He, J., & Henstock, T. J. (2013). Thermal structure and megathrust Seismogenic potential of the Makran subduction zone. Geophysical Research Letters, 40(8), 1528–1533.

    Google Scholar 

  • Starrs, R. (2014). When the tsunami came to shore: Culture and disaster in Japan. Leiden: Global Oriental. https://doi.org/10.1163/9789004268319.

    Article  Google Scholar 

  • Strasser, F. O., Arango, M., & Bommer, J. J. (2010). Scaling of the source dimensions of interface and intraslab subduction-zone earthquakes with moment magnitude. Seismological Research Letters, 81(6), 941–950.

    Google Scholar 

  • Sugino, H., Iwabuchi, Y., Hashimoto, N., Matsusue, K., Ebisawa, K., Kameda, H., Imamura, F. (2015) The characterizing model for tsunami source regarding the inter-plate earthquake tsunami. Journal of JAEE, 15(3):3_114–3_133.

  • Tajalli Bakhsh, T. (2014) Improvements and applications of state-of-the-art numerical models for simulating tsunami hazard. PhD thesis

  • Tehranirad B, Shi F, Kirby JT, Harris JC, Grilli S (2011) Tsunami benchmark results for fully nonlinear boussinesq wave model funwave-tvd, version 1.0. Center for Applied Coastal Research, University of Delaware, Tech Rep

  • Thio, H. K. (2010). Urs probabilistic tsunami hazard system: A user manual. Technical Report URS Corporation.

    Google Scholar 

  • Thio, H. K., Somerville, P., & Ichinose, G. (2007). Probabilistic analysis of strong ground motion and tsunami hazards in southeast Asia. Journal of Earthquake and Tsunami, 1(02), 119–137.

    Google Scholar 

  • Thio HK, Wilson RI, Miller K (2014) Evaluation and application of probabilistic tsunami hazard analysis in California. AGUFM, 2014:NH12A–01.

  • Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., et al. (2020). Review article: Natural hazard risk assessments at the global scal. Natural Hazards and Earth System Sciences, 20, 1069–1096. https://doi.org/10.5194/nhess-20-1069-2020.

    Article  Google Scholar 

Download references

Acknowledgements

The computation was carried out using the computer resources offered under the category of General Projects by the Research Institute for Information Technology, Kyushu University. We would like to thank Editage (www.editage.com) for English language editing and the Ports and Maritime Organization of Iran (PMO) for providing us with bathymetry data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parastoo Salah.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salah, P., Sasaki, J. & Soltanpour, M. Comprehensive Probabilistic Tsunami Hazard Assessment in the Makran Subduction Zone. Pure Appl. Geophys. 178, 5085–5107 (2021). https://doi.org/10.1007/s00024-021-02725-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-021-02725-y

Keywords

Navigation