Skip to main content
Log in

Molecularly imprinted polymer film based plasmonic sensors for detection of ochratoxin A in dried fig

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Ochratoxin A (OTA), a group of highly toxic fungal secondary metabolites, is one of the most common mycotoxins that contaminate a wide range of agricultural products. Herein, we designed a label-free and selective surface plasmon resonance (SPR) based sensor for detection of OTA contamination in dried fig. The molecularly imprinted polymer film (MIP) was fabricated onto the SPR sensor chip by using light-initiated polymerization of N-methacryloyl-(L)-phenylalanine and 2-Hydroxyethyl methacrylate in the presence of OTA as a template. SPR chips were characterized by using contact angle, atomic force microscopy, and ellipsometry. OTA imprinted sensor was displayed a broad linear range, between 0.1 ng/mL and 20 ng/mL. The limit of detection was calculated as 0.028 ng/mL. The selectivity studies of the OTA imprinted SPR sensor was performed in the presence of aflatoxin M1, aflatoxin B1, and citrinin. The imprinting factor was found to be 2.85. The adsorption behavior of the OTA imprinted sensor was found as suitable for the Langmuir model. Results displayed that the OTA imprinted SPR sensor was successfully applied to determine OTA in dried fig samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Armutcu C, Uzun L, Denizli A (2018) Determination of Ochratoxin A traces in foodstuffs: comparison of an automated on-line two-dimensional high-performance liquid chromatography and off-line immunoaffinity-high-performance liquid chromatography system. J Chromatogr A 1569:139–148

    Article  CAS  PubMed  Google Scholar 

  2. Hernandez Y, Lagos LK, Galarreta BC (2020) Development of a label-free-SERS gold nanoaptasensor for the accessible determination of ochratoxin A. Sens Biosensing Res 28:1100331

    Google Scholar 

  3. Karczmarczyk A, Haupt K, Feller KH (2017) Development of a QCM-D biosensor for ochratoxin A detection in red wine. Talanta 166:193–197

    Article  CAS  PubMed  Google Scholar 

  4. Yuan J, Deng D, Lauren DR, Aguilar M-I, Wu Y (2009) Surface plasmon resonance biosensor for the detection of ochratoxin A in cereals and beverages. Anal Chim Acta 656:63–71

    Article  CAS  PubMed  Google Scholar 

  5. Liu X, Zhang X (2015) Aptamer-based technology for food analysis. Appl Biochem Biotechnol 175:603–624

    Article  CAS  PubMed  Google Scholar 

  6. Bianco M, Sonato A, De Girolamo A, Pascale M, Romanato F, Rinaldi R, Arima V (2017) An aptamer-based SPR-polarization platform for high sensitive OTA detection. Sens Actuators B Chem 241:314–320

    Article  CAS  Google Scholar 

  7. González-Peñas E, Leache C, Viscarret M, De Obanos AP, Araguás C, De Cerain AL (2004) Determination of ochratoxin A in wine using liquid-phase microextraction combined with liquid chromatography with fluorescence detection. J Chromatogr A 1025:163–168

    Article  PubMed  Google Scholar 

  8. Kolosova A, Stroka J (2012) Evaluation of the effect of mycotoxin binders in animal feed on the analytical performance of standardised methods for the determination of mycotoxins in feed. Food Addit Contam A 29:1959–1971

    Article  CAS  Google Scholar 

  9. Marechal A, Jarrosson F, Randon J, Dugas V, Demesmay C (2015) In-line coupling of an aptamer based miniaturized monolithic affinity preconcentration unit with capillary electrophoresis and laser induced fluorescence detection. J Chromatogr A 1406:109–117

    Article  CAS  PubMed  Google Scholar 

  10. Teixeira T, Hoeltz M, Einloft T, Dottori H, Manfroi V, Noll I (2011) Determination of ochratoxin A in wine from the southern region of Brazil by thin layer chromatography with a charge-coupled detector. Food Addit Contam B 4:289–293

    Article  CAS  Google Scholar 

  11. Zhang A, Ma Y, Feng L, Wang Y, He C, Wang X, Zhang H (2011) Development of a sensitive competitive indirect ELISA method for determination of ochratoxin A levels in cereals originating from Nanjing China. Food Control 22:1723–1728

    Article  CAS  Google Scholar 

  12. Shinbo K, Takizawa K, Obata N, Lertvachirapaiboon C, Baba A, Kato K, Kaneko F (2016) Transmission light property due to grating-coupled long-range surface plasmon resonance. Poly Bull 73:2539–2546

    Article  CAS  Google Scholar 

  13. Kant R (2020) Surface plasmon resonance based fiber–optic nanosensor for the pesticide fenitrothion utilizing Ta2O5 nanostructures sequestered onto a reduced graphene oxide matrix. Microchim Acta 187:8

    Article  CAS  Google Scholar 

  14. Jiang S, Peng Y, Ning B, Bai Y, Liu N, Gao Z (2015) Surface plasmon resonance sensor based on molecularly imprinted polymer film for detection of histamine. Sens Actuator B Chem 221:15–21

    Article  CAS  Google Scholar 

  15. Oh HK, Lee JM, Byun TH, Park SY, Kim YH (2001) Purification of recombinant human B-domain-deleted factor VIII using anti-factor VIII monoclonal antibody selected by the surface plasmon resonance biosensor. Biotechnol Prog 17:1119–1127

    Article  CAS  PubMed  Google Scholar 

  16. Rahtuvanoğlu A, Akgönüllü S, Karacan S, Denizli A (2020) Biomimetic nanoparticles based surface plasmon resonance biosensors for histamine detection in foods. ChemistrySelect 5:5683–5692

    Article  Google Scholar 

  17. Siddik AB, Hossain S, Paul AK, Rahman M, Mollah A (2020) High sensitivity property of dual-core photonic crystal fiber temperature sensor based on surface plasmon resonance. Sens Biosensing Res 29:100350

    Article  Google Scholar 

  18. Bakhshpour M, Göktürk I, Bereli N, Denizli A (2020) Molecularly imprinted cryogel cartridges for the selective recognition of tyrosine. Biotechnol Prog 36(5):e3006

  19. Battal D, Akgönüllü S, Yalcin MS, Yavuz H, Denizli A (2018) Molecularly imprinted polymer based quartz crystal microbalance sensor system for sensitive and label-free detection of synthetic cannabinoids in urine. Biosens Bioelectron 111:10–17

    Article  CAS  PubMed  Google Scholar 

  20. Çorman ME, Armutcu C, Uzun L, Denizli A (2017) Rapid, efficient and selective preconcentration of benzo[a]pyrene (BaP) by molecularly imprinted composite cartridge and HPLC. Mater Sci Eng C 70:41–53

    Article  Google Scholar 

  21. Martins GV, Marques AC, Fortunato E (2020) Sales MGF based (bio) sensor for label-free detection of 3-nitrotyrosine in human urine samples using molecular imprinted polymer. Sens Biosensing Res 28:100333

    Article  Google Scholar 

  22. Regasa MB, Soreta TR, Femi OE, Ramamurthy PC, Subbiahraj S (2020) Novel multifunctional molecular recognition elements based on molecularly imprinted poly (aniline-co-itaconic acid) composite thin film for melamine electrochemical detection. Sens Biosensing Res 27:100318

    Article  Google Scholar 

  23. Saylan Y, Akgönüllü S, Yavuz H, Ünal S, Denizli A (2019) Molecularly imprinted polymer based sensors for medical applications. Sensors 19:1279

    Article  CAS  PubMed Central  Google Scholar 

  24. Zhang Y, Lu Y, Zhong J, Li W, Wei Q, Wang K (2019) Molecularly imprinted polymer microspheres prepared via the two-step swelling polymerization for the separation of lincomycin. J Appl Poly Sci 136:47938

    Article  Google Scholar 

  25. Wu H, Li X, Meng S, Jicheng Xu, Zhang W, Jiang Y, Qiu F (2018) A comprehensive theoretical study of structural optimization, interaction energies calculations and solvent effects between ractopamine and functional monomers in molecular imprinting polymers. Polym Bull 75:1981–1996

    Article  CAS  Google Scholar 

  26. Arabi M, Ostovan A, Bagheri AR, Guo X, Wang L, Li J, Wang X, Li B, Chen L (2020) Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trends Anal Chem 128:115923

    Article  CAS  Google Scholar 

  27. Luliński P (2017) Molecularly imprinted polymers based drug delivery devices: a way to application in modern pharmacotherapy. Rev Mater Sci Eng C 76:1344–1353

    Article  Google Scholar 

  28. Muratsugu S, Shirai S, Tada M (2020) Recent progress in molecularly imprinted approach for catalysis. Tetrahedron Lett 61:151603

    Article  CAS  Google Scholar 

  29. Pešić MP, Todorov MD, Becskereki G, Horvai G, Verbić TŽ, Tóth B (2020) A novel method of molecular imprinting applied to the template cholesterol. Talanta 217:121075

    Article  PubMed  Google Scholar 

  30. Shuang Han Fu, Tenga YW, Sua L, Lenga Q, Jianga H (2020) Drug-loaded dual targeting graphene oxide-based molecularly imprinted composite and recognition of carcino-embryonic antigen. RSC Adv 10:10980–10988

    Article  PubMed  PubMed Central  Google Scholar 

  31. Satoshi Muratsugu and Mizuki Tada (2013) Molecularly imprinted Ru complex catalysts integrated on oxide surfaces. Acc Chem Res 46(2):300–311

    Article  PubMed  Google Scholar 

  32. Srivastava J, Gupta N, Kushwaha A, Umrao S, Srivastava A, Singh M (2019) Highly sensitive and selective estimation of aspartame by chitosan nanoparticles–graphene nanocomposite tailored EQCM-MIP sensor. Polym Bull 76:4431–4449

    Article  CAS  Google Scholar 

  33. Rebelo TSCR, Costa R, Brandao ATSC, Silva AF, Sales MGF, Pereira CM (2019) Molecularly imprinted polymer SPE sensor for analysis of CA-125 on serum. Anal Chimi Acta 1082:126–135

    Article  CAS  Google Scholar 

  34. Kim J, Gedi V, Lee SC, Cho JH, Moon JY, Yoon MY (2015) Advances in anthrax detection: overview of bioprobes and biosensors. Appl Biochem Biotechnol 176:957–977

    Article  CAS  PubMed  Google Scholar 

  35. Liu X, Zhang Y, Wang S, Liu C, Wang T, Qiu Z, Wang X, Waterhouse GI, Xu C, Yin H (2020) Performance comparison of surface plasmon resonance biosensors based on ultrasmall noble metal nanoparticles templated using bovine serum albumin. Microchem J 155:104737

    Article  CAS  Google Scholar 

  36. Bao H, Wei T, Li X, Zhao Z, Cui H, Zhang P (2012) Detection of TNT by a molecularly imprinted polymer film-based surface plasmon resonance sensor. Chin Sci Bull 57:2102–2105

    Article  CAS  Google Scholar 

  37. Ayankojo AG, Reut J, Öpik A, Furchner V, Syritski V (2018) Hybrid molecularly imprinted polymer for amoxicillin detection. Biosens Biolectron 118:102–107

    Article  CAS  Google Scholar 

  38. Li W, Zheng Y, Zhang T, Wu S, Zhang J, Fang J (2018) A surface plasmon resonance-based optical fiber probe fabricated with electropolymerized molecular imprinting film for melamine detection. Sensors 18:828

    Article  PubMed Central  Google Scholar 

  39. Tan Y, Jing L, Ding Y, Wei T (2015) A novel double-layer molecularly imprinted polymer film based surface plasmon resonance for determination of testosterone in aqueous media. Appl Surf Sci 342:84–91

    Article  CAS  Google Scholar 

  40. Turner NW, Piletska EV, Karim K, Whitcombe M, Malecha M, Magan N, Baggiani C, Piletsky SA (2004) Effect of the solvent on recognition properties of molecularly imprinted polymer specific for ochratoxin A. Biosens Bioelectron 20(6):1060–1067

    Article  CAS  PubMed  Google Scholar 

  41. Chen MM, Wang Y, Cheng SB, Wen W, Zhang X, Wang S, Huang WH (2018) Construction of highly efficient resonance energy transfer platform inside a nanosphere for ultrasensitive electrochemiluminescence detection. Anal Chem 90:5075–5081

    Article  CAS  PubMed  Google Scholar 

  42. Wang Q, Chen M, Zhang H, Wen W, Zhang X, Wang S (2016) Solid-state electrochemiluminescence sensor based on RuSi nanoparticles combined with molecularly imprinted polymer for the determination of ochratoxin A. Sensor Actuator B Chem 222:264–269

    Article  CAS  Google Scholar 

  43. Pacheco JG, Castro M, Machado S, Barroso MF, Nouws HPA, Delerue-Matos C (2015) Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sens Actuator B: Chem 215:107–112

    Article  CAS  Google Scholar 

  44. Hu M, Huang P, Suo L, Wu F (2018) Polydopamine-based molecularly imprinting polymers on magnetic nanoparticles for recognition and enrichment of ochratoxins prior to their determination by HPLC. Microchimi Acta 185:300

    Article  Google Scholar 

  45. Lyu H, Sun H, Zhu Y, Wang J, Xie Z, Lic J (2020) A double-recognized aptamer-molecularly imprinted monolithic column for high-specificity recognition of ochratoxin A. Anal Chimi Acta 1103:97–105

    Article  CAS  Google Scholar 

  46. Akgönüllü S, Yavuz H, Denizli A (2020) SPR nanosensor based on molecularly imprinted polymer film with gold nanoparticles for sensitive detection of aflatoxin B1. Talanta 219:121219

    Article  PubMed  Google Scholar 

  47. Tsai WC, Hsieh CK (2007) QCM-Based Immunosensor for the Determination of Ochratoxin A. Anal Lett 40:1979–1991

    Article  CAS  Google Scholar 

  48. Vidal J, Duato P, Bonel L, Castillo J (2009) Use of polyclonal antibodies to ochratoxin A with a quartz–crystal microbalance for developing real-time mycotoxin piezoelectric immunosensors. Anal Bioanal Chem 394:575–582

    Article  CAS  PubMed  Google Scholar 

  49. Bueno D, Mishra RK, Hayat A, Catanante G, Sharma V, Muñoz R, Marty JL (2016) Portable and low cost fluorescence set-up for in-situ screening of Ochratoxin A. Talanta 159:395–400

    Article  CAS  PubMed  Google Scholar 

  50. Hernández DB, Mishra RK, Munoz R, Marty JL (2017) Low cost optical device for detection of fluorescence from Ochratoxin A using a CMOS sensor. Sens Actuator B: Chem 246:606–614

    Article  Google Scholar 

  51. Catanante G, Mishra RK, Hayat A, Marty JL (2016) Sensitive analytical performance of folding based biosensor using methylene blue tagged aptamers. Talanta 153:138–144

    Article  CAS  PubMed  Google Scholar 

  52. Radi AE, Munoz-Berbel X, Lates V, Marty JL (2009) Label-free impedimetric immunosensor for sensitive detection of ochratoxin A. Biosens Bioelectron 24:1888–1892

    Article  CAS  PubMed  Google Scholar 

  53. Wang R, Xiang Y, Zhou X, Liu L-h, Shi H (2015) A reusable aptamer-based evanescent wave all-fiber biosensor for highly sensitive detection of Ochratoxin A. Biosens Bioelectron 66:11–18

    Article  CAS  PubMed  Google Scholar 

  54. Wang Q, Chen M, Zhang H, Wen W, Zhang X, Wang S (2016) Solid-state electrochemiluminescence sensor based on RuSi nanoparticles combined with molecularly imprinted polymer for the determination of ochratoxin A. Sens Actuators B Chem 222:264–269

    Article  CAS  Google Scholar 

  55. Han C, Shang Z, Zhang H, Song Q (2013) Detection of hidden drugs with a molecularly imprinted electrochemiluminescence sensor. Anal Methods 5:6064–6070

    Article  CAS  Google Scholar 

  56. Kaur N, Bharti A, Batra S, Rana S, Rana S, Bhalla A, Prabhakar N (2019) An electrochemical aptasensor based on graphene doped chitosan nanocomposites for determination of Ochratoxin A. Microchem J 144:102–109

    Article  CAS  Google Scholar 

  57. Zamfir L-G, Geana I, Bourigua S, Rotariu L, Bala C, Errachid A, Jaffrezic-Renault N (2011) Highly sensitive label-free immunosensor for ochratoxin A based on functionalized magnetic nanoparticles and EIS/SPR detection. Sens Actuators B Chem 159:178–184

    Article  CAS  Google Scholar 

  58. Rehmat Z, Mohammed WS, Sadiq MB, Somarapalli M, Anal AK (2019) Ochratoxin A detection in coffee by competitive inhibition assay using chitosan-based surface plasmon resonance compact system. Colloid Surfaces B 174:569–574

    Article  CAS  Google Scholar 

  59. Wei T, Ren P, Huang L, Ouyang Z, Wang Z, Kong X, Li T, Yin Y, Wu Y, He Q (2019) Simultaneous detection of aflatoxin B1, ochratoxin A, zearalenone and deoxynivalenol in corn and wheat using surface plasmon resonance. Food Chem 300:125176

    Article  CAS  PubMed  Google Scholar 

  60. Jorn C, Lai EP (2005) Interaction of ochratoxin A with molecularly imprinted polypyrrole film on surface plasmon resonance sensor. React Funct Polym 63:171–176

    Article  Google Scholar 

  61. Urusov A, Kostenko S, Sveshnikov P, Zherdev A, Dzantiev B (2011) Ochratoxin A immunoassay with surface plasmon resonance registration: Lowering limit of detection by the use of colloidal gold immunoconjugates. Sens Actuators B Chem 156:343–349

    Article  CAS  Google Scholar 

  62. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adil Denizli.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6000 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akgönüllü, S., Armutcu, C. & Denizli, A. Molecularly imprinted polymer film based plasmonic sensors for detection of ochratoxin A in dried fig. Polym. Bull. 79, 4049–4067 (2022). https://doi.org/10.1007/s00289-021-03699-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-021-03699-6

Keywords

Navigation