Skip to main content
Log in

A systematic review of pure metals reinforced plastic composites

  • Review
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

In conjunction with the pressing and rising needs to develop improved materials for modern tastes and demands, developing metal-reinforced plastic composites is equally a key aspect of solid waste management. In this study, the literature on pure metal-reinforced plastic composites was systematically reviewed to catalogue key findings, observe trends in results, evaluate the progress of the research area and predict future perspectives. The major metals used as fillers in plastic composites are aluminium, copper and iron and the most used polymer is epoxy. Aluminium is the most popular metal used due to its low cost, corrosion resistance, availability and excellent thermal and electrical properties. Studies preferred manual mixing, hand layup and casting for the composite production. Parametric studies have delved into the factor-response relationships for filler content against morphological, physical, electrical, thermal and mechanical properties of the composites. The nature of the base plastic resin had a greater influence on the electrical properties of the plastics and the conductivities of the composites in terms of their base resin was in the order PS > EP > PVC. Tribological investigations revealed that wear rate increased with increasing test load and speed and that increase in metal fillers was led to greater wear resistance. From the review, the need to gain further knowledge on the corrosion characteristics, flame retardation ability and effect of other process factors were noted. Metal reinforced plastic composites can be served as semiconductors, dielectric materials, ballistic protections, building panels and aircraft materials. Investigations and breakthroughs in this research area would be invaluable to many of other areas in science and technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Arpitha G, Yogesha B (2017) An overview on mechanical property evaluation of natural fiber reinforced polymers. Mater Today Proc 4:2755–2760. https://doi.org/10.1016/j.matpr.2017.02.153

    Article  Google Scholar 

  2. Nikzad M, Masood SH, Sbarski I (2011) Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater Des 32:3448–3456

    Article  CAS  Google Scholar 

  3. Osman AF, Mariatti M (2006) Properties of aluminum filled polypropylene composites. Polym Polym Compos 14:623–633. https://doi.org/10.1177/09673911060140060

    Article  CAS  Google Scholar 

  4. Delmonte J (1990) Metal/polymer composites. Springer, Boston

    Book  Google Scholar 

  5. Taya M, Arsenault RJ (2016) Metal matrix composites: thermomechanical behavior. Pergamon, New York

    Google Scholar 

  6. Dubey N, Leclerc M (2011) Conducting polymers: efficient thermoelectric materials. J Polym Sci B Polym Phys 49:467–475

    Article  CAS  Google Scholar 

  7. Xu X, Luo Q, Lv W, Dong Y, Lin Y, Yang Q, Shen A, Pang D, Hu J, Qin J, Li Z (2011) Functionalization of graphene sheets by polyacetylene: convenient synthesis and enhanced emission. Macromol Chem Phys 212:768–773

    Article  CAS  Google Scholar 

  8. Silvestri F, Marrocchi A (2010) Acetylene-based materials in organic photovoltaics. Int J Mol Sci 11:1471–1508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xia Y, Lu Y (2010) Conductive polymers/polyacrylonitrile composite fibers: fabrication and properties. Polym Compos 31:340–346

    CAS  Google Scholar 

  10. Huang J, Virji S, Weiller BH, Kaner RB (2004) Nanostructured polyaniline sensors. Chem Eur J 10:1314–1319

    Article  CAS  PubMed  Google Scholar 

  11. Chougule MA, Pawar SG, Godse PR, Mulik RN, Sen S, Patil VB (2011) Synthesis and characterization of polypyrrole (PPy) thin films. Soft Nanosci Lett 1:6–10

    Article  CAS  Google Scholar 

  12. Yuan L, Yao B, Hu B, Huo K, Chen W, Zhou J (2013) Polypyrrole-coated paper for flexible solid-state energy storage. Energy Environ Sci 6:470–476

    Article  CAS  Google Scholar 

  13. Concina I, Vomiero A (2015) Metal oxide semiconductors for dye-and quantum-dot-sensitized solar cells. Small 11:1744–1774

    Article  CAS  PubMed  Google Scholar 

  14. O’Mahony FTF, Cappel UB, Tokmoldin N, Lutz T, Lindblad R, Rensmo H, Haque SA (2013) Low-temperature solution processing of mesoporous metal–sulfide semiconductors as light-harvesting photoanodes. Angew Chem Int Ed Engl 52:12047–12051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gaiser P, Binz J, Gompf B, Berrier A, Dressel M (2015) Tuning the dielectric properties of metallic-nanoparticle/elastomer composites by strain. Nanoscale 7:4566–4571

    Article  CAS  PubMed  Google Scholar 

  16. Al-Oqla FM, Sapuan SM, Anwer T, Jawaid M, Hoque ME (2015) Natural fiber reinforced conductive polymer composites as functional materials: a review. Synth Met 206:42–54

    Article  CAS  Google Scholar 

  17. McWilliams B, Yu J, Pankow M, Yen C-F (2015) Ballistic impact behavior of woven ceramic fabric reinforced metal matrix composites. Int J Impact Eng 86:57–66

    Article  Google Scholar 

  18. Zhao L, Qian X, Sun Y, Yuan M, Tang F, Zhao Y, Zhang Q, Chen Y (2018) Ballistic behaviors of injection-molded honeycomb composite. J Mater Sci 53:14287–14298

    Article  CAS  Google Scholar 

  19. Chavooshi A, Madhoushi M (2013) Mechanical and physical properties of aluminum powder/MDF dust/polypropylene composites. Constr Build Mater 44:214–220

    Article  Google Scholar 

  20. Cree D, Pugh M (2010) Production and characterization of a three-dimensional cellular metal-filled ceramic composite. J Mater Process Technol 210:1905–1917

    Article  CAS  Google Scholar 

  21. Podzhivotov NY, Kablov EN, Antipov VV, Erasov VS, Serebrennikova NY, Abdullin MR, Limonin MV (2017) Laminated metal-polymeric materials in structural elements of aircraft. Inorg Mater Appl Res 8:211–221

    Article  Google Scholar 

  22. Samotu I, Dauda M, Anafi F, Obada D (2015) Suitability of recycled polyethylene/palm kernel shell-iron filings composite for automobile application. Tribol Ind 37:142–153

    Google Scholar 

  23. Huang Y, Kormakov S, He X, Gao X, Zheng X, Liu Y, Sun J, Wu D (2019) Conductive polymer composites from renewable resources: an overview of preparation, properties, and applications. Polymers 11:187. https://doi.org/10.3390/polym11020187

    Article  CAS  PubMed Central  Google Scholar 

  24. Lancaster L, Lung MH, Sujan D (2013) Utilization of agro-industrial waste in metal matrix composites: towards sustainability. Int J Environ Ecol Eng 7:35–43

    Google Scholar 

  25. Bahrami A, Soltani N, Pech-Canul MI, Gutiérrez CA (2016) Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Crit Rev Environ Sci Technol 46:143–208

    Article  Google Scholar 

  26. Singh R, Singh N, Fabbrocino F, Fraternali F, Ahuja IPS (2016) Waste management by recycling of polymers with reinforcement of metal powder. Compos B Eng 105:23–29

    Article  CAS  Google Scholar 

  27. Dwivedi SP, Sharma S, Mishra RK (2016) Synthesis and mechanical behaviour of green metal matrix composites using waste eggshells as reinforcement material. Green Process Synth 5:275–282

    CAS  Google Scholar 

  28. Shamsudin S, Lajis MA, Zhong ZW (2016) Evolutionary in solid state recycling techniques of aluminium: a review. Proc CIRP 40:256–261

    Article  Google Scholar 

  29. Amini Mashhadi H, Moloodi A, Golestanipour M, Karimi EZV (2009) Recycling of aluminium alloy turning scrap via cold pressing and melting with salt flux. J Mater Process Technol 209:3138–3142

    Article  CAS  Google Scholar 

  30. Alguacil FJ, Garcia-Diaz I, Lopez F, Rodriguez O (2015) Recycling of copper flue dust via leaching-solvent extraction processing. Desalin Water Treat 56:1202–1207

    Article  CAS  Google Scholar 

  31. Oishi T, Yaguchi M, Koyama K, Tanaka M, Lee J-C (2008) Hydrometallurgical process for the recycling of copper using anodic oxidation of cuprous ammine complexes and flow-through electrolysis. Electrochim Acta 53:2585–2592

    Article  CAS  Google Scholar 

  32. Satyaprakash HP, Saini S (2019) Mechanical properties of concrete in presence of iron filings as complete replacement of fine aggregates. Mater Today 15:536–545

    CAS  Google Scholar 

  33. Alserai SJ, Alsaraj WK, Abass ZW (2018) Effect of iron filings on the mechanical properties of different types of sustainable concrete. Open Civil Eng J 12:441–457

    Article  Google Scholar 

  34. Ighalo JO, Adeniyi AG (2020) Utilization of recycled polystyrene and aluminum wastes in the development of conductive plastic composites: evaluation of electrical properties. In: Hussain CM (ed) Handbook of environmental materials management. Springer, Cham. https://doi.org/10.1007/978-3-319-58538-3_228-1

    Chapter  Google Scholar 

  35. Abdulkareem SA, Adeniyi AG (2019) Recycling copper and polystyrene from solid waste stream in developing conductive composites. J Solid Waste Technol Manag 45:39–44

    Article  CAS  Google Scholar 

  36. Block C, Ephraim A, Weiss-Hortala E, Pham Minh D, Nzihou A, Vandecasteele C (2018) Co-pyrogasification of plastics and biomass, a review. Waste Biomass Valoriz. https://doi.org/10.1007/s12649-018-0219-8

    Article  Google Scholar 

  37. Ragaert K, Delva L, Van Geem K (2017) Mechanical and chemical recycling of solid plastic waste. Waste Manag 69:24–58

    Article  CAS  PubMed  Google Scholar 

  38. Rybicka J, Tiwari A, Del Campo PA, Howarth J (2015) Capturing composites manufacturing waste flows through process mapping. J Clean Prod 91:251–261

    Article  Google Scholar 

  39. Krishnan PK, Christy JV, Arunachalam R, Mourad A-HI, Muraliraja R, Al-Maharbi M, Murali V, Chandra MM (2019) Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: influence on microstructure and mechanical properties. J Alloy Compd 784:1047–1061

    Article  CAS  Google Scholar 

  40. Dinaharan I, Nelson R, Vijay SJ, Akinlabi ET (2016) Microstructure and wear characterization of aluminum matrix composites reinforced with industrial waste fly ash particulates synthesized by friction stir processing. Mater Charact 118:149–158

    Article  CAS  Google Scholar 

  41. Sommerhuber PF, Welling J, Krause A (2015) Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in wood–plastic composites. Waste Manag 46:76–85

    Article  CAS  PubMed  Google Scholar 

  42. Sun Z, Shi S, Hu X, Guo X, Chen J, Chen H (2015) Short-aramid-fiber toughening of epoxy adhesive joint between carbon fiber composites and metal substrates with different surface morphology. Compos B Eng 77:38–45

    Article  CAS  Google Scholar 

  43. Khan M, Amjad M, Khan A, Ud-Din R, Ahmad I, Subhani T (2017) Microstructural evolution, mechanical profile, and fracture morphology of aluminum matrix composites containing graphene nanoplatelets. J Mater Res 32:2055–2066

    Article  CAS  Google Scholar 

  44. Anwar Z, Kausar A, Rafique I, Muhammad B (2016) Advances in epoxy/graphene nanoplatelet composite with enhanced physical properties: a review. Polym Plast Technol Eng 55:643–662

    Article  CAS  Google Scholar 

  45. El Moumen A, Kanit T, Imad A, El Minor H (2015) Effect of reinforcement shape on physical properties and representative volume element of particles-reinforced composites: statistical and numerical approaches. Mech Mater 83:1–16

    Article  Google Scholar 

  46. Qin W, Vautard F, Drzal LT, Yu J (2015) Mechanical and electrical properties of carbon fiber composites with incorporation of graphene nanoplatelets at the fiber–matrix interphase. Compos B Eng 69:335–341

    Article  CAS  Google Scholar 

  47. Zhou W, Wang Z, Dong L, Sui X, Chen Q (2015) Dielectric properties and thermal conductivity of PVDF reinforced with three types of Zn particles. Compos Part A Appl Sci Manuf 79:183–191

    Article  CAS  Google Scholar 

  48. Chu K, Wang X-H, Li Y-B, Huang D-J, Geng Z-R, Zhao X-L, Liu H, Zhang H (2018) Thermal properties of graphene/metal composites with aligned graphene. Mater Des 140:85–94

    Article  CAS  Google Scholar 

  49. Doganay D, Coskun S, Kaynak C, Unalan HE (2016) Electrical, mechanical and thermal properties of aligned silver nanowire/polylactide nanocomposite films. Compos B Eng 99:288–296

    Article  CAS  Google Scholar 

  50. Fafenrot S, Grimmelsmann N, Wortmann M, Ehrmann A (2017) Three-dimensional (3D) printing of polymer-metal hybrid materials by fused deposition modeling. Materials 10:1199. https://doi.org/10.3390/ma10101199

    Article  CAS  PubMed Central  Google Scholar 

  51. Hwang S, Reyes EI, Moon K-S, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Electron Mater 44:771–777

    Article  CAS  Google Scholar 

  52. Bello SA, Agunsoye JO, Hassan SB, Zebase Kana MG, Raheem IA (2015) Epoxy resin based composites, mechanical and tribological properties: a review. Tribol Ind 37:500–524

    Google Scholar 

  53. Bello SA, Agunsoye JO, Adebisi JA, Hassan SB (2017) Effects of aluminium particles on mechanical and morphological properties of epoxy nanocomposites. Acta Period Technol 48:25–38. https://doi.org/10.2298/APT1748025B

    Article  CAS  Google Scholar 

  54. Singh S, Gangwar S, Yadav S (2017) A review on mechanical and tribological properties of micro/nano filled metal alloy composites. Mater Today 4:5583–5592

    Google Scholar 

  55. Li J, Liu L, Zhang D, Yang D, Guo J, Wei J (2014) Fabrication of polyaniline/silver nanoparticles/multi-walled carbon nanotubes composites for flexible microelectronic circuits. Synth Met 192:15–22. https://doi.org/10.1016/j.synthmet.2014.02.026

    Article  CAS  Google Scholar 

  56. Kumar A, Kumar K, Saurav S, Siva Sankarraju R (2016) Study of physical, mechanical and machinability properties of aluminium metal matrix composite reinforced with coconut shell ash particulates. Imp J Interdiscip Res 2:151–157

    Google Scholar 

  57. Sarkar P, Modak N, Sahoo P (2017) Mechanical characteristics of aluminium powder filled glass epoxy composites. Int J Eng Technol 12:1–14

    CAS  Google Scholar 

  58. Sarkar P, Modak N, Sahoo P (2018) Mechanical and tribological characteristics of aluminium powder filled glass epoxy composites. Mater Today 5:5496–5505. https://doi.org/10.1016/j.matpr.2017.12.139

    Article  CAS  Google Scholar 

  59. Kaewmaneekul T, Lothongkum G (2013) Effect of aluminium on the passivation of zinc–aluminium alloys in artificial seawater at 80 °C. Corros Sci 66:67–77. https://doi.org/10.1016/j.corsci.2012.09.004

    Article  CAS  Google Scholar 

  60. Bullock J, Yan D, Cuevas A (2013) Passivation of aluminium–n+ silicon contacts for solar cells by ultrathin Al2O3 and SiO2 dielectric layers. Phys Status Solidi RRL 7:946–949. https://doi.org/10.1002/pssr.201308115

    Article  CAS  Google Scholar 

  61. Harish V, Nagaiah N, Kumar HGH (2012) Lead oxides filled isophthalic resin polymer composites for gamma radiation shielding applications. Indian J Pure Appl Phys 50:847–850

    CAS  Google Scholar 

  62. Choi S, Kim J (2013) Thermal conductivity of epoxy composites with a binary-particle system of aluminum oxide and aluminum nitride fillers. Compos B Eng 51:140–147

    Article  CAS  Google Scholar 

  63. Zarrinkhameh M, Zendehnam A, Hosseini SM (2015) Fabrication of polyvinylchloride based nanocomposite thin film filled with zinc oxide nanoparticles: morphological, thermal and optical characteristics. J Ind Eng Chem 30:295–301

    Article  CAS  Google Scholar 

  64. Im H, Kim J (2011) Enhancement of the thermal conductivity of aluminum oxide-epoxy terminated poly (dimethyl siloxane) with a metal oxide containing polysiloxane. J Mater Sci 46:6571–6580

    Article  CAS  Google Scholar 

  65. Adedayo SM, Onitiri MA (2012) Tensile properties of iron ore tailings filled epoxy composites. West Indian J Eng 35:51–59

    Google Scholar 

  66. Onitiri MA, Akinlabi ET (2017) Effects of particle size and particle loading on the tensile properties of iron-ore-tailing-filled epoxy and polypropylene composites. Mech Compos Mater 52:817–828. https://doi.org/10.1007/s11029-017-9633-4

    Article  CAS  Google Scholar 

  67. Adeniyi AG, Ighalo JO, Onifade DV (2019) Banana and plantain fiber reinforced polymer composites. J Polym Eng 39:597–611. https://doi.org/10.1515/polyeng-2019-0085

    Article  CAS  Google Scholar 

  68. Adeniyi AG, Onifade DV, Ighalo JO, Adeoye AS (2019) A review of coir fiber reinforced polymer composites. Compos B Eng 176:107305. https://doi.org/10.1016/j.compositesb.2019.107305

    Article  CAS  Google Scholar 

  69. Abdulkareem S, Adeniyi A (2017) Production of particle boards using polystyrene and bamboo Wastes. Niger J Technol 36:788–793. https://doi.org/10.4314/njt.v36i3.18

    Article  Google Scholar 

  70. Abdulkareem S, Adeniyi A (2018) Preparation and evaluation of electrical properties of plastic composites developed from recycled polystyrene and local clay. Niger J Technol Dev 15:98–101. https://doi.org/10.4314/njtd.v15i3.4

    Article  Google Scholar 

  71. Abdulkareem SA, Adeniyi AG (2018) Tensile and water absorbing properties of natural fibre reinforced plastic composites from waste polystyrene and rice husk. ABUAD J Eng Res Dev 1:199–204

    Google Scholar 

  72. Abdulkareem SA, Raji SA, Adeniyi AG (2017) Development of particleboard from waste styrofoam and sawdust. Niger J Technol Dev 14:18–22. https://doi.org/10.4314/njtd.v14i1.3

    Article  Google Scholar 

  73. Katabira K, Yoshida Y, Masuda A, Watanabe A, Narita F (2018) Fabrication of Fe–Co magnetostrictive fiber reinforced plastic composites and their sensor performance evaluation. Materials 11:406. https://doi.org/10.3390/ma11030406

    Article  CAS  PubMed Central  Google Scholar 

  74. Irez A, Bayraktar E, Miskioglu I (2018) Recycled and devulcanized rubber modified epoxy-based composites reinforced with nano-magnetic iron oxide, Fe3O4. Compos B Eng 148:1–13. https://doi.org/10.1016/j.compositesb.2018.04.047

    Article  CAS  Google Scholar 

  75. Azghan MA, Eslami-Farsani R (2018) The effects of stacking sequence and thermal cycling on the flexural properties of laminate composites of aluminium-epoxy/basalt-glass fibres. Mater Res Express 5:025302. https://doi.org/10.1088/2053-1591/aaa92c

    Article  CAS  Google Scholar 

  76. Kumar TS, Shivashankar GS, Dhotey K, Singh J (2017) Experimental study wear rate of glass fibre reinforced epoxy polymer composites filled with aluminium powder. Mater Today 4:10764–10768. https://doi.org/10.1016/j.matpr.2017.08.025

    Article  Google Scholar 

  77. Halder S, Ahemad S, Das S, Wang J (2016) Epoxy/glass fiber laminated composites integrated with amino functionalized ZrO2 for advanced structural applications. ACS Appl Mater Interfaces 8:1695–1706. https://doi.org/10.1021/acsami.5b09149

    Article  CAS  PubMed  Google Scholar 

  78. Biswas B, Chabri S, Mitra BC, Bandyopadhyay NR, Sinha A (2018) Mechanical behaviour of aluminium dispersed unsaturated polyester/jute composites for structural applications. J Inst Eng India Ser C 99:525–530. https://doi.org/10.1007/s40032-016-0329-7

    Article  Google Scholar 

  79. Haldar P, Modak N, Sutradhar G (2017) Comparative evaluation of mechanical properties of sisal-epoxy composites with and without addition of aluminium powder. Mater Today 4:3397–3406. https://doi.org/10.1016/j.matpr.2017.02.228

    Article  Google Scholar 

  80. Tamilarasan U, Karunamoorthy LK, Palanikumar K (2015) Mechanical properties evaluation of the carbon fibre reinforced aluminium sandwich composites. Mater Res 18:1029–1037. https://doi.org/10.1590/1516-1439.017215

    Article  CAS  Google Scholar 

  81. Sharmila TB, Antony JV, Jayakrishnan MP, Beegum PS, Thachil ET (2016) Mechanical, thermal and dielectric properties of hybrid composites of epoxy and reduced graphene oxide/iron oxide. Mater Des 90:66–75. https://doi.org/10.1016/j.matdes.2015.10.055

    Article  CAS  Google Scholar 

  82. Senthilkumar N, Kalaichelvan K, Elangovan K (2012) Mechanical behaviour of aluminum particulate epoxy composite–experimental study and numerical simulation. Int J Mech Mater Eng 7:214–221

    Google Scholar 

  83. Friedrich D, Luible A (2016) Standard-compliant development of a design value for wood–plastic composite cladding: an application-oriented perspective. Case Stud Struct Eng 5:13–17

    Article  Google Scholar 

  84. Tao Y, Wang H, Li Z, Li P, Shi SQ (2017) Development and application of wood flour-filled polylactic acid composite filament for 3D printing. Materials 10:339. https://doi.org/10.3390/ma10040339

    Article  CAS  PubMed Central  Google Scholar 

  85. Caggiano A (2018) Machining of fibre reinforced plastic composite materials. Materials 11:442. https://doi.org/10.3390/ma11030442

    Article  CAS  PubMed Central  Google Scholar 

  86. Rao GHK, Ansari MNM, Begum S (2013) Effect of cutting parameters on the surface roughness of MWCNT reinforced epoxy composite using CNC end-milling process. Int J Sci Res 2:51–55

    Google Scholar 

  87. Kim M, Kim D, Hwang S, Park J, Seo C, Shin S, Ahn J, Lee J (2009) A case of allergic contact dermatitis caused by epichlorohydrin and tris-DMP in an epoxy resin worker. Korean J Occup Environ Med 21:276–282

    Article  Google Scholar 

  88. Koli A (2015) Study on thermal and acoustic characteristics of bagasse fibre reinforced epoxy composites. Thesis, Department of Mechanical Engineering, National Institute of Technology Rourkela, Odisha (India)

  89. Soni A, Agrawal A (2020) Thermal properties of polymer composites filled with ceramic particles. Int J Eng Res Curr Trend 2:1–6

    Google Scholar 

  90. Kim M, Kim S, Kim T, Lee D, Seo B, Lim C-S (2017) Mechanical and thermal properties of epoxy composites containing zirconium oxide impregnated halloysite nanotubes. Coatings 7:231. https://doi.org/10.3390/coatings7120231

    Article  CAS  Google Scholar 

  91. Dalle Vacche S, Michaud V, Demierre M, Bourban P-E, Manson J-AE (2016) Curing kinetics and thermomechanical properties of latent epoxy/carbon fiber composites. IOP Conf Ser Mater Sci Eng 139:012049

    Article  Google Scholar 

  92. Raetzke K, Shaikh MQ, Faupel F, Noeske P-LM (2010) Shelf stability of reactive adhesive formulations: a case study for dicyandiamide-cured epoxy systems. Inter J Adhes Adhes 30:105–110

    Article  CAS  Google Scholar 

  93. Kim H-J, Jung D-H, Jung I-H, Cifuentes JI, Rhee KY, Hui D (2012) Enhancement of mechanical properties of aluminium/epoxy composites with silane functionalization of aluminium powder. Compos B Eng 43:1743–1748. https://doi.org/10.1016/j.compositesb.2011.12.010

    Article  CAS  Google Scholar 

  94. Bagherzadeh MR, Mahdavi F, Ghasemi M, Shariatpanahi H, Faridi HR (2010) Using nanoemeraldine salt-polyaniline for preparation of a new anticorrosive water-based epoxy coating. Prog Org Coat 68:319–322

    Article  CAS  Google Scholar 

  95. Haji Ali Akbari Y, Sarabi AA, Khorassani M, Nasri Kandloo SM (2012) Epoxy-montmorillonite nanocomposites: the influence of hardener reactivity on morphology and corrosion resistance properties. J Color Sci Technol 6:125–134

    Google Scholar 

  96. Mamunya YP, Davydenko VV, Pissis P, Lebedev EV (2002) Electrical and thermal conductivity of polymers filled with metal powders. Eur Polym J 38:1887–1897. https://doi.org/10.1016/S0014-3057(02)00064-2

    Article  CAS  Google Scholar 

  97. Koo B, Liu Y, Zou J, Chattopadhyay A, Dai L (2014) Study of glass transition temperature (Tg) of novel stress-sensitive composites using molecular dynamic simulation. Model Simul Mater Sci Eng 22:065018

    Article  CAS  Google Scholar 

  98. Johnston JP, Koo B, Subramanian N, Chattopadhyay A (2017) Modeling the molecular structure of the carbon fiber/polymer interphase for multiscale analysis of composites. Compos B Eng 111:27–36. https://doi.org/10.1016/j.compositesb.2016.12.008

    Article  CAS  Google Scholar 

  99. Irez AB, Bayraktar E, Miskioglu I (2018) Mechanical characterization of epoxy–scrap rubber based composites reinforced with alumina fibers. In: Thakre P, Singh R, Slipher G (eds) Mechanics of composite and multi-functional materials. Springer, Cham. https://doi.org/10.1007/978-3-319-63408-1_6

    Chapter  Google Scholar 

  100. Butt J, Shirvani H (2018) Experimental analysis of metal/plastic composites made by a new hybrid method. Addit Manuf 22:216–222. https://doi.org/10.1016/j.addma.2018.05.029

    Article  CAS  Google Scholar 

  101. Kinoshita K, Minami H, Tarutani Y, Tajima K, Okubo M, Yanagimoto H (2011) Preparations of polystyrene/aluminum hydroxide and polystyrene/alumina composite particles in an ionic liquid. Langmuir 27:4474–4480. https://doi.org/10.1021/la200172j

    Article  CAS  PubMed  Google Scholar 

  102. Çopuroğlu M, Şen M (2015) Synthesis and characterization of a Zr-containing silicate-based epoxy-functional polymer nanocomposite system. Polym Eng Sci 55:792–798. https://doi.org/10.1002/pen.23946

    Article  CAS  Google Scholar 

  103. Esthappan SK, Nair AB, Joseph R (2015) Effect of crystallite size of zinc oxide on the mechanical, thermal and flow properties of polypropylene/zinc oxide nanocomposites. Compos B Eng 69:145–153. https://doi.org/10.1016/j.compositesb.2013.08.010

    Article  CAS  Google Scholar 

  104. Pargi MNF, Teh PL, Hussiensyah S, Yeoh CK, Ghani SA (2015) Recycled-copper-filled epoxy composites: the effect of mixed particle size. Int J Mech Mater Eng 10:3. https://doi.org/10.1186/s40712-015-0030-2

    Article  Google Scholar 

  105. Bilston D, Rathnaweera G, Ruan D, Hajj M, Durandet Y (2016) Parametric study of the bending properties of lightweight tubular metal/polymer foam hybrid structures. Compos B Eng 105:101–110

    Article  CAS  Google Scholar 

  106. Liu J, Wang Z, Hui D (2018) Blast resistance and parametric study of sandwich structure consisting of honeycomb core filled with circular metallic tubes. Compos B Eng 145:261–269

    Article  Google Scholar 

  107. Abdulkareem S, Amosa MK, Adeniyi AG (2018) Synthesis and structural analysis of aluminium-filled polystyrene composites from recycled wastes. Environ Res Eng Manag 74:58–66. https://doi.org/10.5755/j01.erem.74.2.19680

    Article  Google Scholar 

  108. Salih SI, Nayyef S, Abd Alsalam AH, Hasan AM (2015) Evaluation mechanical properties of polymer composites reinforced by different metal powders. Eng Technol J Part (B) 33:1348–1360

    Google Scholar 

  109. Srivastava V, Verma A (2015) Mechanical behaviour of copper and aluminium particles reinforced epoxy resin composites. Am J Mater Sci 5:84–89. https://doi.org/10.5923/j.materials.20150504.02

    Article  Google Scholar 

  110. Abdulkareem SA, Amosa MK, Adeniyi AG, Magaji MM, Ajibola RA (2019) Effect of metallic fillers on the hardness of polystyrene composites: an experimental investigation. IOP Conf Ser Mater Sci Eng 640:012058

    Article  CAS  Google Scholar 

  111. Kurt E, Özçelik CY, Yetgin S, Ömürlü FÖ, Balköse D (2013) Preparation and characterization of flexible polyvinylchloride-copper composite films. Polym Polym Compos 21:139–144

    CAS  Google Scholar 

  112. Madej L (2017) Digital/virtual microstructures in application to metals engineering—a review. Arch Civ Mech Eng 17:839–854

    Article  Google Scholar 

  113. Jassim AN, Alwan RM, Kadhim QA, Nsaif AA (2016) Preparation and characterization of ZnO/polystyrene nanocomposite films using ultrasound irradiation. J Nanosci Nanotechnol 6:17–23. https://doi.org/10.5923/j.nn.20160602.01

    Article  CAS  Google Scholar 

  114. Kumar V, Sinha SK, Agarwal AK (2017) Tribological studies of epoxy composites with solid and liquid fillers. Tribol Int 105:27–36

    Article  CAS  Google Scholar 

  115. Li S, Yu S, Feng Y (2016) Progress in and prospects for electrical insulating materials. High Volt 1:122–129

    Article  Google Scholar 

  116. Gao W, Zheng Y, Shen J, Guo S (2015) Electrical properties of polypropylene-based composites controlled by multilayered distribution of conductive particles. ACS Appl Mater Interface 7:1541–1549

    Article  CAS  Google Scholar 

  117. Blythe AR (1984) Electrical resistivity measurements of polymer materials. Polym Test 4:195–209. https://doi.org/10.1016/0142-9418(84)90012-6

    Article  CAS  Google Scholar 

  118. Warfield RW, Petree MC (1961) Electrical resistivity of polymers. Polym Eng Sci 1:80–85. https://doi.org/10.1002/pen.760010208

    Article  Google Scholar 

  119. Anuar J, Mariatti M, Ismail H (2007) Properties of aluminium and zinc-filled natural rubber composites. Polym Plast Technol Eng 46:667–674. https://doi.org/10.1080/15583720701271484

    Article  CAS  Google Scholar 

  120. Saini A, Aseer JR (2015) Experimental and theoretical thermal conductivity analysis of copper/aluminium reinforced epoxy polymer composites. J Mater Sci Mech Eng 2:34–36

    Google Scholar 

  121. Abdulkareem SA, Adeniyi AG, Amosa MK, Raji SA (2020) Development of plastic composite using waste sawdust, rice husk and bamboo in the polystyrene-based resin (PBR) matrix at ambient conditions. In: Daramola M, Ayeni A (eds) Valorization of biomass to value-added commodities. Springer, Cham. https://doi.org/10.1007/978-3-030-38032-8_20

    Chapter  Google Scholar 

  122. Adeniyi AG, Onifade DV, Abdulkareem SA, Amosa MK, Ighalo JO (2020) Valorization of plantain stalk and polystyrene wastes for composite development. J Polym Environ 28:2644–2651. https://doi.org/10.1007/s10924-020-01796-7

    Article  CAS  Google Scholar 

  123. Adeniyi AG, Adeoye AS, Onifade DV, Ighalo JO (2019) Multi-scale finite element analysis of effective elastic property of sisal fiber reinforced polystyrene composites. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2019.1660016

    Article  Google Scholar 

  124. Adeniyi AG, Adeoye AS, Ighalo JO, Onifade DV (2020) FEA of effective elastic properties of banana fiber-reinforced polystyrene composite. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2020.1712628

    Article  Google Scholar 

  125. Balegh B, Trouzine H, Houmadi Y (2018) Finite element simulation and prediction of mechanical and electrochemical behavior on crevice corrosion in sheet pile steel. Jordan J Mech Ind Eng 12:23–31

    Google Scholar 

  126. Prasad V, Joy A, Venkatachalam G, Narayanan S, Rajakumar S (2014) Finite element analysis of jute and banana fibre reinforced hybrid polymer matrix composite and optimization of design parameters using ANOVA technique. Proc Eng 97:1116–1125. https://doi.org/10.1016/j.proeng.2014.12.390

    Article  CAS  Google Scholar 

  127. Chen H, Ginzburg VV, Yang J, Yang Y, Liu W, Huang Y, Du L, Chen B (2016) Thermal conductivity of polymer-based composites: fundamentals and applications. Prog Polym Sci 59:41–85. https://doi.org/10.1016/j.progpolymsci.2016.03.001

    Article  CAS  Google Scholar 

  128. Goh CK, Valavan SE, Low TK, Tang LH (2016) Effects of different surface modification and contents on municipal solid waste incineration fly ash/epoxy composites. Waste Manag 58:309–315

    Article  CAS  PubMed  Google Scholar 

  129. Li W, Xiao J, Shi C, Poon CS (2015) Structural behaviour of composite members with recycled aggregate concrete—an overview. Adv Struct Eng 18:919–938

    Article  Google Scholar 

  130. Vijay N, Rajkumara V, Bhattacharjee P (2016) Assessment of composite waste disposal in aerospace industries. Proc Environ Sci 35:563–570

    Article  Google Scholar 

  131. Khosrozadeh A, Darabi MA, Xing M, Wang Q (2016) Flexible electrode design: fabrication of freestanding polyaniline-based composite films for high-performance supercapacitors. ACS Appl Mater Interfaces 8:11379–11389. https://doi.org/10.1021/acsami.5b11256

    Article  CAS  PubMed  Google Scholar 

  132. Hogg PJ (2003) Composites for ballistic applications. Proc Compos Process, pp 1–11

  133. Fejdyś M, Kośla K, Kucharska-Jastrząbek A, Landwijt M (2016) Hybride composite armour systems with advanced ceramics and ultra-high molecular weight polyethylene (UHMWPE) fibres. Fibres Text East Eur 24:79–89

    Article  Google Scholar 

  134. Abu Talib AR, Abbud LH, Ali A, Mustapha F (2011) Mechanical properties of interlaminer Kevlar29 and Al2O3 powder/epoxy composite plates using an analytical approach. Sci Res Essays 6:4455–4463

    Article  CAS  Google Scholar 

  135. Groh A, Frechette J, Burt K, Fenneman M (2006) Method of manufacturing a metal-reinforced plastic panel, Crane Building Products LLC, US20060012071A1

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Adewale George Adeniyi or Joshua O. Ighalo.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Ethical approval

This article does not contain any studies involving human or animal subjects.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeniyi, A.G., Ighalo, J.O. A systematic review of pure metals reinforced plastic composites. Iran Polym J 30, 751–768 (2021). https://doi.org/10.1007/s13726-021-00922-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-021-00922-z

Keywords

Navigation