Skip to main content
Log in

The Dynamics of Carbon Pools and Biological Activity of Retic Albic Podzols in Southern Taiga during the Postagrogenic Evolution

  • SOIL CHEMISTRY
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The succession of natural vegetation on the former arable soils triggers the processes of postagrogenic restoration of soil ecological functions specific of a particular bioclimatic zone. We analyze the postagrogenic dynamics of a set of soil characteristics in the upper (0–5 and 5–10 cm) layers of former arable horizon by the case study of the chronosequence of Retic Albic Podzols (agrosoddy podzols, southern taiga, Kostroma oblast, Russia) withdrawn from agricultural use 15, 20, and 45 years ago. The following soil characteristics are determined: pHKCl; the contents of soil organic carbon (SOC), total nitrogen (TN), and dissolved carbon and nitrogen (DOC and DON); basal respiration (BR) rate; carbon of microbial biomass (Cmic); and relative indicators of the state of microbial community. In addition, absolute (HIX1) and relative (HIX2) humification indices of dissolved organic matter (DOM) are assessed for the soil layer of 0–5 cm in the studied soil chronosequence, as well as the stratification ratio (SR (0–5 : 5–10)). The following changes are observed in the upper layers of the former arable horizon over 45 years of postagrogenic succession: (1) a statistically significant decrease in the pHKCl and humification index of DOM; (2) an increase in the SOC, TN, and Cmic contents and BR rate; and (3) a considerable stratification according to the SOC and TN contents and microbial properties. The highest values of SR for the SOC and TN are observed in the soil of the old-aged forest; for the microbial properties, in the 45-yr-old abandoned soil. Thus, the main characteristics and ecological functions of Retic Albic Podzol gradually restore during the secondary succession on the former arable land in the southern taiga zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Climate data archive. http://climatbase.ru/. Accessed June 4, 2020.

  2. S. I. Bolysov and Yu. N. Fuzeina, “Physical and geographic conditions of Kostroma Volga region: geological and geomorphologic structure,” in Kostroma Volga Region: Nature and Humans (Moscow, 2001), pp. 36–60.

    Google Scholar 

  3. A. S. Vladychensky, V. M. Telesnina, and T. A. Chalaya, “Influence of fallen plant leaves on biological activity of post-agrogenic soils of southern taiga,” Moscow Univ. Soil Sci. Bull. 67, 1–7 (2012).

    Article  Google Scholar 

  4. L. S. Ermolova, Ya. I. Gul’be, T. A. Gul’be, and A. Ya. Gul’be, “Morphological features and seasonal development of grey alder in young stands on the deposits of Yaroslavl oblast,” Lesovedenie, No. 4, 279–293 (2016).

    Google Scholar 

  5. L. L. Shishov, V. D. Tonkonogov, I. I. Lebedeva, and M. I. Gerasimova, Classification and Diagnostic System of Russian Soils (Oikumena, Smolensk, 2004) [in Russian].

    Google Scholar 

  6. A. A. Kolesnik, “Spatial distribution of total and water-soluble humus in agricultural chernozems of Krasnoyarsk forest-steppe using minimal soil tillage,” in Proceedings of the X International Scientific-Practical Conference of Young Scientists “Innovative Trends of Development of Russian Science” (Krasnoyarsk, 2017), pp. 38–40.

  7. A. V. Litvinovich, O. Yu. Pavlova, and D. V. Chernov, “Change of humus content in soddy-podzolic soil after anthropogenic impact,” Dokl. Ross. Akad. S-kh. Nauk, No. 6, 26–28 (2002).

    Google Scholar 

  8. A. V. Litvinovich and I. A. Pavlova, “Change of acid-base properties of soddy-podzolic loamy soil during postagrogenic evolution,” in Scientific Basis for Development of Agroindustrial Complex under Reformation (St. Petersburg, 2009), pp. 160–164.

  9. D. I. Lyuri, S. V. Goryachkin, N. A. Karavaeva, E. A. Denisenko, and T. G. Nefedova, Dynamics of Agricultural Lands of Russia in 20th Century and Postagrogenic Recovery of Vegetation and Soils (GEOS, Moscow, 2010) [in Russian].

    Google Scholar 

  10. K. A. Maslennikova, O. M. Konyukhova, and A. V. Kanarskii, “Phenol glycosides of plants of the family Salicaceae,” Vestn. Kazan. Tekhnol. Univ., 17 (14), 383–387 (2014).

    Google Scholar 

  11. Study Methods of Biological Cycle in Various Natural Zones (Mysl’, Moscow, 1978) [in Russian].

  12. A. S. Mostovaya, I. N. Kurganova, V. O. Lopes de Gerenyu, O. S. Khokhlova, A. V. Rusakov, and A. S. Shapovalov, “Change of microbiological activity of grey forest soils during natural afforestation,” Vestn. Voronezh. Gos. Univ., Ser. Khim., Biol., Farm., No. 2, 64–72 (2015).

  13. G. N. Ogureeva, Botanical-Geographic Zonation of the USSR (Moscow State Univ., Moscow, 1991) [in Russian].

    Google Scholar 

  14. C. A. Parker, Photoluminescence of Solutions: With Applications to Photochemistry and Analytical Chemistry (Elsevier, Amsterdam, 1968; Mir, Moscow, 1972).

  15. Russian Regions: Social and Economic Indices (Rosstat, Moscow, 2018) [in Russian].

  16. A. A. Romanovskaya, V. N. Korotkov, R. T. Karaban’, and N. S. Smirnov, “Dynamics of carbon balance components in fallow arable lands on the Valdai Upland,” Russ. J. Ecol. 43, 373–377 (2012). https://doi.org/10.1134/S106741361204011X

    Article  Google Scholar 

  17. I. M. Ryzhova, A. A. Erokhova, and M. A. Podvezennaya, “Dynamics of carbon reserves in postagrogenic ecosystems as a result of afforestation in Kostroma oblast,” Lesovedenie, No. 4, 307–317 (2015).

    Google Scholar 

  18. V. M. Semenov, L. A. Ivannikova, T. V. Kuznetsova, and N. A. Semenova, “The role of plant biomass in the formation of the active pool of soil organic matter,” Eurasian Soil Sci. 37, 1196–1204 (2004).

    Google Scholar 

  19. V. M. Semenov and B. M. Kogut, Soil Organic Matter (GEOS, Moscow, 2015) [in Russian].

    Google Scholar 

  20. E. B. Skvortsova, O. Yu. Baranova, and G. B. Numerov, “Change of soil microstructure during afforestation of arable lands,” Pochvovedenie, No. 9, 101–109 (1987).

    Google Scholar 

  21. V. M. Telesnina, L. G. Bogatyrev, A. I. Benediktova, Ph. I. Zemskov, and M. N. Maslov, “The dynamics of plant debris input and of some properties of forest litters during postagrogenic reforestation under the conditions of southern taiga,” Moscow Univ. Soil Sci. Bull. 74, 139–145 (2019).

    Article  Google Scholar 

  22. A. I. Utkin, Ya. I. Gul’be, T. A. Gul’be, A. Ya. Gul’be, and L. S. Ermolova, “Birch and grey alder forests is ecotone between coniferous forest ecosystems and agricultural lands in the central region of the Russian Plain,” Lesovedenie, No. 4, 64–65 (2005).

    Google Scholar 

  23. A. S. Fomina, “Intensity of elementary pedogenic processes in soddy-podzolic sandy soils and possible use of fallow lands,” Izv. S.-Peterb. Gos. Agrar. Univ., No. 13, 11–15 (2009). https://doi.org/10.1134/S1064229314090117

  24. N. D. Anan’eva, E. V. Blagodatskaya, and T. S. Demkina, “Estimating the resistance of soil microbial complexes to natural and anthropogenic impacts,” Eurasian Soil Sci. 35, 514–521 (2002).

    Google Scholar 

  25. N. D. Anan’eva, E. V. Blagodatskaya, and T. S. Demkina, “The effect of drying-moistening and freezing-thawing on soil microbial communities resilience,” Eurasian Soil Sci. 30, 1010–1014 (1997).

    Google Scholar 

  26. N. D. Ananyeva, E. A. Susyan, I. M. Ryzhova, E. O. Bocharnikova, and E. V. Stolnikova, “Microbial biomass carbon and the microbial carbon dioxide production by soddy-podzolic soils in postagrogenic biogeocenoses and in native spruce forests of the southern taiga (Kostroma oblast),” Eurasian Soil Sci. 42, 1029–1037 (2009). https://doi.org/10.1134/S1064229309090105

    Article  Google Scholar 

  27. J. P. E. Anderson and K. H. Domsch, “A physiological method for the quantitative measurement of microbial biomass in soils,” Soil Biol. Biochem. 10 (3), 215–221 (1978).

    Article  Google Scholar 

  28. T.-H. Anderson, “Physiological analysis of microbial communities in soil: applications and limitations,” in Beyond the Biomass: Compositional and Functional Analysis of Soil Microbial Communities (Wiley, London, 1994), pp. 67–76.

    Google Scholar 

  29. T.-H. Anderson and K. H. Domsch, “The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils,” Soils Biol. Biochem. 25, 393–395 (1993). https://doi.org/10.1016/0038-0717(93)90140-7

    Article  Google Scholar 

  30. E. Blagodatskaya, T. Yuyukina, S. Blagodatsky, and Y. Kuzyakov, “Turnover of soil organic matter and of microbial biomass under C3–C4 vegetation change: consideration of 13C fractionation and preferential substrate utilization,” Soil Biol. Biochem. 43 (1), 159–166 (2011). https://doi.org/10.1016/j.soilbio.2010.09.028

    Article  Google Scholar 

  31. A. M. Ermolaev and L. T. Shirshova, “Influence of weather conditions and management of a sown meadow on the herbage productivity and properties of gray forest soils,” Eurasian Soil Sci. 33, 1321–1328 (2000).

    Google Scholar 

  32. A. A. Erokhova, M. I. Makarov, E. G. Morgun, and I. M. Ryzhova, “Effect of the natural reforestation of an arable land on the organic matter composition in soddy-podzolic soils,” Eurasian Soil Sci. 47, 1100–1106 (2014). https://doi.org/10.1134/S1064229314110040

    Article  Google Scholar 

  33. U. Falkengren-Grerup, D.-J. ten Brink, and J. Brunet, “Land use effects on soil N, P, C and pH persist over 40–80 years of forest growth on agricultural soils,” For. Ecol. Manage. 225 (1–3), 74–81 (2006). https://doi.org/10.1016/j.foreco.2005.12.027

    Article  Google Scholar 

  34. A. O. Ferreira and T. J. Carneiro Amado, “Stratification ratio as soil carbon sequestration indicator in Oxisol and Alfisol under no-tillage,” in CO 2 Sequestration and Valorization, Ed. by C. R. V. Morgado and V. Esteves (InT-echOpen, London, 2014), Chap. 6, pp. 157–169. https://doi.org/10.5772/57063

  35. G. K. Ganjegunte, L. M. Condron, P. W. Clinton, M. R. Davis, and N. Mahieu, “Effects of the addition of forest floor extracts on soil carbon dioxide efflux,” Biol. Fertil. Soils 43 (2), 199–207 (2006). https://doi.org/10.1007/S00374-006-0093-6

    Article  Google Scholar 

  36. L. B. Guo and R. M. Gifford, “Soil carbon stocks and land use change: a metaanalysis,” Global Change Biol. 8, 345–360 (2000). https://doi.org/10.1046/j.1354-1013.2002.00486x

    Article  Google Scholar 

  37. A. Huguet, L. Vacher, S. Relexans, S. Saubusse, J.‑M. Froidefond, and E. Parlanti, “Properties of fluorescent dissolved organic matter in the Gironde estuary,” Org. Geochem. 40, 706–719 (2009). https://doi.org/10.1016/j.orggeochem.2009.03.002

    Article  Google Scholar 

  38. K. V. Ivashchenko, N. D. Ananyeva, V. I. Vasenev, V. N. Kudeyarov, and R. Valentini, “Biomass and respiration activity of soil microorganisms in anthropogenically transformed ecosystems (Moscow region),” Eurasian Soil Sci. 47, 892–903 (2014). https://doi.org/10.1134/S1064229314090051

    Article  Google Scholar 

  39. G. Jia, J. Cao, C. Wang, and G. Wang, “Microbial biomass and nutrients in soil at the different stages of secondary forest succession in Ziwulin, northwest China,” For. Ecol. Manage. 217 (1), 117–125 (2005). https://doi.org/10.1016/j.foreco.2005.05.055

    Article  Google Scholar 

  40. O. Kalinina, A. Cherkinsky, O. Chertov, S. Goryachkin, I. Kurganova, V. Lopes de Gerenyu, D. Lyuri, Ya. Kusyakov, and L. Giani, “Post-agricultural restoration: implication for dynamics of soil organic matterpools,” Catena 181, 1–8 (2019). https://doi.org/10.1016/j.catena.2019.104096

    Article  Google Scholar 

  41. O. Kalinina, O. Chertov, A. V. Dolgikh, S. V. Goryachkin, D. I. Lyuri, S. Vormstein, and L. Giani, “Self-restoration of post-agrogenic Albeluvisols: soil development, carbon stocks and dynamics of carbon pools,” Geoderma 207–208, 221–233 (2013). https://doi.org/10.1016/j.geoderma.2013.05.019

    Article  Google Scholar 

  42. O. Kalinina, O. Chertov, P. Frolov, S. Goryachkin, P. Kuner, J. Küper, I. Kurganova, V. Lopes de Gerenyu, D. Lyuri, A. Rusakov, Y. Kuzyakov, and L. Giani, “Alteration process during the post-agricultural restoration of Luvisols of the temperate broad-leaved forest in Russia,” Catena 171, 602–612 (2018). https://doi.org/10.1016/j.catena.2018.08.004

    Article  Google Scholar 

  43. O. Kalinina, A. N. Barmin, O. Chertov, A. V. Dolgikh, S. V. Goryachkin, D. I. Lyuri, and L. Giani, “Self-restoration of post-agrogenic soils of Calcisol–Solonetz complex: soil development, carbon stock dynamics of carbon pools,” Geoderma 237–238, 117–128 (2014).https://doi.org/10.1016/j.geoderma.2014.08.013

  44. O. Kalinina, S. V. Goryachkin, N. A. Karavaeva, D. I. Lyuri, and L. Giani, “Dynamics of carbon pools in post-agrogenic sandy soils of southern taiga of Russia,” Carbon Balance Manage. 5 (1), 1–9 (2010). https://doi.org/10.1186/1750-0680-5-1

    Article  Google Scholar 

  45. O. Kalinina, S. Goryachkin, N. Karavaeva, D. I. Lyuri, L. Najdenko, and L. Giani, “Self-restoration of post-agrogenic sandy soils in the southern taiga of Russia: soil development, nutrient status, and carbon dynamics,” Geoderma 152, 35–42 (2009). https://doi.org/10.1016/j.geoderma.2009.05.014

    Article  Google Scholar 

  46. O. Kalinina, S. V. Goryachkin, D. I. Lyuri, and L. Giani, “Post-agrogenic development of vegetation, soils, and carbon stocks under self-restoration in different climatic zones of European Russia,” Catena 129, 18–29 (2015). https://doi.org/10.1016/j.catena.2015.02.016

    Article  Google Scholar 

  47. O. Kalinina, A. N. Barmin, O. Chertov, A. V. Dolgikh, S. V. Goryachkin, D. I. Lyuri, and L. Giani, “Self-restoration of post-agrogenic chernozems of Russia: soil development, carbon stocks, and dynamics of carbon pools,” Geoderma 162, 196–206 (2011). https://doi.org/10.1016/j.geoderma.2011.02.005

    Article  Google Scholar 

  48. I. Kämpf, N. Hölzel, M. Störrle, G. Broll, and K. Kiehl, “Potential of temperate agricultural soils for carbon sequestration: a meta-analysis of land-use effects,” Sci. Total Environ. 566–567, 428–435 (2016). https://doi.org/10.1016/j.scitotenv.2016.05.067

    Article  Google Scholar 

  49. E. I. Karavanova, D. F. Zolovkina, and A. A. Stepanov, “Biochemical stability of water-soluble organic matter in litter of iron-illuvial podzol before and after interaction with mineral horizons,” Moscow Univ. Soil Sci. Bull. 74, 154–159 (2019). https://doi.org/10.3103/S0147687419040057

    Article  Google Scholar 

  50. D. V. Karelin, S. V. Goryachkin, A. V. Kudikov, V. O. Lopes de Gerenu, V. N. Lunin, A. V. Dolgikh, and D. I. Lyuri, “Changes in carbon pool and CO2 emission in the course of postagrogenic succession on gray soils (Luvic Phaeozems) in European Russia,” Eurasian Soil Sci. 50, 559–572 (2017). https://doi.org/10.1134/S1064229317050076

    Article  Google Scholar 

  51. I. O. Kechaikina, A. G. Ryumin, and S. N. Chukov, “Postagrogenic transformation of organic matter in soddy-podzolic soils,” Eurasian Soil Sci. 44, 1077–1089 (2011). https://doi.org/10.1134/S1064229311100061

    Article  Google Scholar 

  52. Y. Kooch, S. Ehsanib, and M. Akbariniac, “Stratification of soil organic matter and biota dynamics in natural and anthropogenic ecosystems,” Soil Tillage Res. 200, 104621 (2020). https://doi.org/10.1016/j.still.2020.104621

    Article  Google Scholar 

  53. I. N. Kurganova and V. O. Lopes de Gerenyu, “Assessment and prediction of changes in the reserves of organic carbon in abandoned soils of European Russia in 1990–2020,” Eurasian Soil Sci. 41, 1371–1377 (2008). https://doi.org/10.1134/S1064229308130048

    Article  Google Scholar 

  54. I. N. Kurganova and V. O. Lopes de Gerenyu, “The stock of organic carbon in soils of the Russian Federation: updated estimation in connection with land use changes,” Dokl. Biol. Sci. 426, 219–221 (2009). https://doi.org/10.1134/S0012496609030089

    Article  Google Scholar 

  55. I. N. Kurganova, V. O. Lopes de Gerenyu, J. F. Gallardo Lancho, and C. T. Oehm, “Evaluation of the rates of soil organic matter mineralization in forest ecosystems of temperate continental, Mediterranean, and tropical monsoon climates,” Eurasian Soil Sci. 45, 68–79 (2012). https://doi.org/10.1134/S1064229312010085

    Article  Google Scholar 

  56. I. N. Kurganova, V. O. Lopes de Gerenyu, A. S. Mostovaya, L. A. Ovsepyan, V. M. Telesnina, V. I. Lichko, and Yu. I. Baeva, “Effect of reforestation on microbiological activity of postagrogenic soils in European Russia,” Contemp. Probl. Ecol. 11, 704–718 (2018)). https://doi.org/10.1134/S1995425518070089

    Article  Google Scholar 

  57. I. N. Kurganova, V. O. Lopes de Gerenyu, A. Z. Shvidenko, and P. M. Sapozhnikov, “Changes in the organic carbon pool of abandoned soils in Russia (1990–2004),” Eurasian Soil Sci. 43, 333–340 (2010). https://doi.org/10.1134/S1064229310030129

    Article  Google Scholar 

  58. I. Kurganova, A. Merino, V. Lopes de Gerenyu, N. Barros, O. Kalinina, L. Giani, and Y. Kuzyakov, “Climate dependent mechanisms of carbon sequestration and stabilization by restoration of arable soils after abandonment,” Geoderma 354, 113882 (2019). https://doi.org/10.1016/j.geoderma.2019.113882

    Article  Google Scholar 

  59. I. N. Kurganova, A. M. Yermolaev, V. O. Lopes de Gerenyu, A. A. Larionova, Ya. Kuzyakov, T. Keller, and S. Lange, “Carbon balance in soils of abandoned lands in Moscow region,” Eurasian Soil Sci. 40, 50–58 (2007). https://doi.org/10.1134/S1064229307010085

    Article  Google Scholar 

  60. V. Lopes de Gerenyu, I. Kurganova, and Ya. Kuzyakov, “Carbon pools and sequestration in former arable chernozems depending on restoration period,” Ekologjia 54 (4), 38–44 (2008). https://doi.org/10.2478/v10055-008-0034-9

    Article  Google Scholar 

  61. D. I. Lyuri, D. V. Karelin, A. V. Kudikov, and S. V. Goryachkin, “Changes in soil respiration in the course of the postagrogenic succession on sandy soils in the southern taiga zone,” Eurasian Soil Sci. 46, 935–947 (2013). https://doi.org/10.1134/S1064229313070041

    Article  Google Scholar 

  62. W. H. McDowell, “Dissolved organic matter in soils–future directions and unanswered questions,” Geoderma 113 (3-4), 179–186 (2003). https://doi.org/10.1016/S0016-7061(02)00360-9

    Article  Google Scholar 

  63. P. E. Odintsov, E. I. Karavanova, and A. A. Stepanov, “Transformation of water-soluble organic substances in litters of podzols in the background and technogenic areas of the Kola Peninsula,” Eurasian Soil Sci. 51, 955–964 (2018). https://doi.org/10.1134/S1064229318080094

    Article  Google Scholar 

  64. T. Ohno, “Fluorescence inner-filtering correction for determining the humification index of dissolved organic matter,” Environ. Sci. Technol. 36 (4), 742–746 (2002). https://doi.org/10.1021/es0200692

    Article  Google Scholar 

  65. L. Ovsepyan, I. Kurganova, V. Lopes de Gerenyu, and Ya. Kuzyakov, “Recovery of organic matter and microbial biomass after abandonment of degraded agricultural soils: the influence of climate,” Land Degrad. Dev. 30 (15), 1861–1874 (2019)). https://doi.org/10.1002/ldr.3387

    Article  Google Scholar 

  66. L. A. Ovsepyan, I. N. Kurganova, V. O. Lopes de Gerenyu, A. V. Rusakov, and Ya. V. Kuzyakov, “Changes in the fractional composition of organic matter in the soils of the forest–steppe zone during their postagrogenic evolution,” Eurasian Soil Sci. 53, 50–61 (2020). https://doi.org/10.31857/SS2180X20010128

    Article  Google Scholar 

  67. L. M. Polyanskaya, D. G. Zvyagintsev, and S. M. Lukin, “The change in composition of microbial biomass in cultivated soils,” Eurasian Soil Sci. 30, 172–177 (1997).

    Google Scholar 

  68. W. M. Post and K. C. Kwon, “Soil carbon sequestration and land-use change: processes and potential,” Global Change Biol. 6, 317–328 (2000). https://doi.org/10.1046/j.1365-2486.2000.00308.x

    Article  Google Scholar 

  69. I. M. Ryzhova, A. A. Erokhova, and M. A. Podvezennaya, “Dynamics and structure of carbon storage in the postagrogenic ecosystems of the southern taiga,” Eurasian Soil Sci. 47, 1207–1215 (2014). https://doi.org/10.1134/S1064229314090117

    Article  Google Scholar 

  70. I. M. Ryzhova, V. M. Telesnina, and A. A. Sitnikova, “Dynamic of soil properties and carbon stock structure in postagrogenic ecosystems of southern taiga during natural reforestation,” Eurasian Soil Sci. 53, 230–243 (2020). https://doi.org/10.1134/S0032180X20020100

    Article  Google Scholar 

  71. J. C. M. Sá and R. Lal, “Stratification ratio of soil organic matter pools as an indicator of carbon sequestration in a tillage chronosequence on a Brazilian Oxisol,” Soil Tillage Res. 103 (1), 46–56 (2009). https://doi.org/10.1016/j.still.2008.09.003

    Article  Google Scholar 

  72. N. Senesi, “Molecular and quantitative aspects of the chemistry of fulvic acid and its interactions with metal ions and organic chemicals. Part II. The fluorescence spectroscopy approach,” Anal. Chim. Acta 232, 77–106 (1990). https://doi.org/10.1016/S0003-2670(00)81226-X

    Article  Google Scholar 

  73. N. Senesi, T. Miano, M. R. Provenzano, and G. Brunetti, “Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy,” Soil Sci. 152 (4), 259–271 (1991). https://doi.org/10.1097/00010694-199110000-00004

    Article  Google Scholar 

  74. O. A. Sorokina, “Diagnostic parameters of soil formation in gray forest soils of abandoned fields overgrowing with pine forests in the middle reaches of the Angara River,” Eurasian Soil Sci. 43, 867–875 (2010). https://doi.org/10.1134/S1064229310080041

    Article  Google Scholar 

  75. M. Spohn, T. J. Novák, J. Incze, and L. Giani, “Dynamics of soil carbon, nitrogen, and phosphorus in calcareous soils after land-use abandonment—A chronosequence study,” Plant Soil 401 (1–2), 185–196 (2016). https://doi.org/10.1007/s11104-015-2513-6

    Article  Google Scholar 

  76. E. V. Stolnikova, N. D. Ananyeva, and O. V. Chernova, “The microbial biomass and its activity and structure in the soils of old forests in the European Russia,” Eurasian Soil Sci. 44, 437–452 (2011). https://doi.org/10.1134/S1064229311040107

    Article  Google Scholar 

  77. E. A. Susyan, S. Wirth, N. Anan’yeva, and E. Stolnikova, “Forest succession on abandoned arable soils in European Russia—Impacts on microbial biomass, fungal-bacterial ratio, and basal CO2 respiration activity,” Eur. J. Soil Biol. 47, 169–174 (2011). https://doi.org/10.1016/j.ejsobi.2011.04.002

    Article  Google Scholar 

  78. V. M. Telesnina, I. N. Kurganova, V. O. Lopes de Gerenyu, L. A. Ovsepyan, V. I. Lichko, A. M. Ermolaev, and D. M. Mirin, “Dynamics of soil properties and plant composition during postagrogenic evolution in different bioclimatic zones,” Eurasian Soil Sci. 50, 1515–1534 (2017). https://doi.org/10.1134/S1064229317120109

    Article  Google Scholar 

  79. V. M. Telesnina, I. E. Vaganov, A. A. Karlsen, A. E. Ivanova, M. A. Zhukov, and S. M. Lebedev, “Specific features of the morphology and chemical properties of coarse-textured postagrogenic soils of the southern taiga, Kostroma oblast,” Eurasian Soil Sci. 49, 102–115 (2016). https://doi.org/10.1134/S1064229316010117

    Article  Google Scholar 

  80. V. M. Telesnina and M. A. Zhukov, “The influence of agricultural land use on the dynamics of biological cycling and soil properties in the course of postagrogenic succession (Kostroma oblast),” Eurasian Soil Sci. 52, 1114–1129 (2019). https://doi.org/10.1134/S1064229319070135

    Article  Google Scholar 

  81. S. M. Uselman, R. G. Qualls, and J. Lilienfein, “Quality of soluble organic C, N and P produced by different types and species of litter: root litter versus leaf litter,” Soil Biol. Biochem. 54, 57–67 (2012). https://doi.org/10.1016/j.soilbio.2012.03.021

    Article  Google Scholar 

  82. A. van der Wal, J. A. van Veen, W. Smant, H. T. S. Boschker, J. Bloem, P. Kardol, W. H. van der Putten, and W. de Boer, “Fungal biomass development in a chronosequence of land abandonment,” Soil Boil. Biochem. 38 (1), 51–60 (2006). https://doi.org/10.1016/j.soilbio.2005.04.017

    Article  Google Scholar 

  83. L. Vesterdal, E. Ritter, and P. Gundersen, “Change in soil organic carbon following afforestation of former arable land,” For. Ecol. Manage. 169 (1–2), 137–147 (2002). https://doi.org/10.1016/S0378-1127(02)00304-3

    Article  Google Scholar 

  84. A. S. Vladychenskii, V. M. Telesnina, K. A. Rumyantseva, and T. A. Chalaya, “Organic matter and biological activity of postagrogenic soils in the southern taiga using the example of Kostroma oblast,” Eurasian Soil Sci. 46, 518–529 (2013). https://doi.org/10.1134/S1064229313050141

    Article  Google Scholar 

  85. M. von Lützow, I. Kögel-Knabner, B. Ludwig, E. Matzner, H. Flessa, K. Ekschmitt, G. Guggenberger, B. Marschner, and K. Kalbitz, “Stabilization mechanisms of organic matter in four temperate soils: development and application of a conceptual model,” J. Plant Nutr. Soil Sci. 171, 111–124 (2008). https://doi.org/10.1002/jpln.200700047|

    Article  Google Scholar 

  86. B. Wang, G. B. Liu, S. Xue, and B. Zhu, “Changes in soil physicochemical and microbiological properties during natural succession on abandoned farmland in the Loess Plateau,” Environ. Earth Sci. 62 (5), 915–925 (2011). https://doi.org/10.1007/s12665-010-0577-4

    Article  Google Scholar 

  87. G. Wang, J. Jin, X. Chen, J. Liu, X. Liu, and S. J. Herbert, “Biomass and catabolic diversity of microbial communities with long-term restoration, bare fallow and cropping history in Chinese Mollisols,” Plant, Soil Environ. 53 (4), 177–185 (2008). https://doi.org/10.17221/2313-PSE

    Article  Google Scholar 

  88. F. Zhao, G. Yang, X. Han, Y. Feng, and G. Ren, “Stratification of carbon fractions and carbon management index in deep soil affected by the Grain-to-Green Program in China,” PLoS One 9 (6), (2014). https://doi.org/10.1371/journal.pone.0099657

  89. D. F. Zolovkina, E. I. Karavanova, and A. A. Stepanov, “Sorption of water-soluble organic substances by mineral horizons of podzol,” Eurasian Soil Sci. 51, 1154–1163 (2018). https://doi.org/10.1134/S1064229318100162

    Article  Google Scholar 

  90. A. Zsolnay, “Dissolved organic matter: artifacts, definitions, and functions,” Geoderma 113 (3–4), 187–209 (2003). https://doi.org/10.1016/S0016-7061(02)00361-0

    Article  Google Scholar 

  91. A. Zsolnay, E. Baigar, M. Jimenez, B. Steinweg, and F. Saccomandi, “Differentiating with fluorescence spectroscopy the sources of dissolved organic matter in soils subjected to drying,” Chemosphere 38 (1), 45–50 (1999). https://doi.org/10.1016/S0045-6535(98)00166-0

    Article  Google Scholar 

Download references

Funding

The work was supported by the Russian Foundation for Basic Research (project no. 18-04-00773) and performed under a state task of the Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences (no. AAAA-A18-118013190177-9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Kurganova.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by G. Chirikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurganova, I.N., Telesnina, V.M., Lopes de Gerenyu, V.O. et al. The Dynamics of Carbon Pools and Biological Activity of Retic Albic Podzols in Southern Taiga during the Postagrogenic Evolution. Eurasian Soil Sc. 54, 337–351 (2021). https://doi.org/10.1134/S1064229321030108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229321030108

Keywords:

Navigation