Skip to main content

Advertisement

Log in

Impact of Parthenium hysterophorus L. invasion on soil nitrogen dynamics of grassland vegetation of Indo-Gangetic plains, India

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

The noxious plant species Parthenium hysterophorus L. has become a major concern for the conservation of many natural and managed areas. The species is known for its various adverse effects on the invaded ecosystems, particularly in terms of biodiversity loss. Currently, P. hysterophorus is a leading invasive species widespread in the grasslands of productive and diversity rich Indo-Gangetic plains of India and is responsible for various changes in the ecosystem. The present study addresses the changes that P. hysterophorus can bring in the vegetation structure (species richness, species evenness, and species composition) of the grasslands of Indo-Gangetic plain. To broaden our understanding of the invasion success and facilitated expansion, we also focus on the variability of soil nitrogen pool and processes as a consequence of invasion. We report that in the presence of P. hysterophorus, the species diversity, evenness, composition and richness were altered, affecting many native and non-native flora of the ecosystem. The effect was more prominent during the second and third year of the study with more increase in the invasion outcomes. Significant changes in soil nitrogen (N) dynamics, particularly, increased available (N), N-mineralization and microbial biomass N have been found in the invaded plots along with changes in vegetation of the grassland community. Overall, the result suggested that the invasive species, P. hysterophorus, modifies the soil and this modification is correlated with changes in vegetation structure and this situation is likely to further facilitate severe alterations in the ecosystem and could favor encroachment of other non-native species in the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdulkerim-Ute, J., & Behailu, L. (2016). Parthenium hysterophorus L: Distribution, impact, and possible mitigation measures in Ethiopia. Tropical and Subtropical Agroecosystems, 19(1), 61–72.

    CAS  Google Scholar 

  • Adkins, S., & Shabbir, A. (2014). Biology, ecology and management of the invasive Parthenium weed (Parthenium hysterophorus L.). Pest management science, 70(7), 1023–1029.

  • Afreen, T., Srivastava, P., Singh, H., & Singh, J. S. (2018). Effect of invasion by Hyptissuaveolens on plant diversity and selected soil properties of a constructed tropical grassland. Journal of Plant Ecology, 11, 751–760.

    Google Scholar 

  • Agarwal, K. K., & D’Souza, M. (2009). Airborne contact dermatitis induced by Parthenium: a study of 50 cases in South India. Clinical and Experimental Dermatology, 34(5), e4–e6.

    CAS  Google Scholar 

  • Ahmad, R., Khuroo, A. A., Hamid, M., et al. (2019). Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodiversity and Conservation, 28, 2319–2344.

    Google Scholar 

  • Allen, M. E., Allen, E. B., & Friese, C. F. (1989). Responses of the non-mycotrophic Salsola kali to invasion by vesicular–arbuscular mycorrhizal fungi. New Phytologist, 111(1), 45–49.

    Google Scholar 

  • APHA (American Public Health Association), . (1985). Standard methods for the examination of water and wastewater. American Public Health Associations.

    Google Scholar 

  • Batish, D. R., Singh, H. P., Pandher, J. K., Arora, V., & Kohli, R. (2006). Phytotoxic effect of Parthenium residues on the selected soil properties and growth of chickpea and radish. Weed Biology and Management, 2, 73–78.

    Google Scholar 

  • Batten, K. M., Scow, K. M., Davies, K. F., & Harrison S. P. (2006). Two invasive plants alter soil microbial community composition in serpentine grasslands. Biological Invasions, 8, 217–230.

    Google Scholar 

  • Belz, R. G., Reinhardtb, C. F., Foxcroft, C. L., & Hurlea, K. (2007). Residue allelopathy in Parthenium hysterophorus Does parthenin play a leading role? Crop Protection, 26, 237–245.

    Google Scholar 

  • Biradar, D., Shivakumar, K., Prakash, S., & Pujar, B. (2006). Bionutrient Potentiality of Parthenium hysterophorus and its Utility as Green Manure in Rice Ecosystem. Karnataka Journal of Agricultural Sciences, 256–263.

  • Blank, R. R., & Young, J. A. (2002). Influence of the exotic invasive crucifer, Lepidium latifolium, on soil properties and elemental cycling. Soil Science, 167(12), 821–829.

    CAS  Google Scholar 

  • Bowles, J. E. (1988). Engineering Properties of Soil and their Management. (3rd ed.). McGraw-Hill Inc, Singapore.

    Google Scholar 

  • Brookes, P. C., Landman, A., Pruden, G., & Jenkinson, D. S. (1985). Cloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry, 17(6), 837–842.

    CAS  Google Scholar 

  • Callaway, R. M., Thelen, G. C., Barth, S., Ramsey, P. W., & Gannon, J. E. (2004). Soil fungi alter interactions between North American plant species and the exotic invader Centaurea maculosa in the field. Ecology, 85, 1062–1071.

    Google Scholar 

  • Campo, J., & Vázquez-Yanes, C. (2004). Effects of nutrient limitation on aboveground carbon dynamics during tropical dry forest regeneration in Yucatán, Mexico. Ecosystems, 7(3), 311–319.

    CAS  Google Scholar 

  • Cavigelli, M. A., & Robertson, G. P. (2000). The functional significance of denitrifier community composition in a terrestrial ecosystem. Ecology, 81(5), 1402–1414.

    Google Scholar 

  • Chacon, N., Herrera, H., Flores, S., Gonzalez, J. A., & Nassar, J. M. (2008). Chemical, physical, and biochemical soil properties and plant roots as affected by native and exotic plants in Neotropical arid zones. Biology and Fertility of Soils, 45(3), 321–328.

    Google Scholar 

  • Coats, V. C., & Rumpho, M. E. (2014). The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Frontiers in Microbiolgoy5, 368.Conference on Parthenium Management, December 5–7, 2005, University of Agricultural.

  • Constán-Nava, S., Soliveres, S., Torices, R., Serra, L., & Bonet, A. (2015). Direct and indirect effects of invasion by the alien tree Ailanthus altissima on riparian plant communities and ecosystem multi functionality. Biological Invasion, 17(4), 1095–1108.

    Google Scholar 

  • Curtis, J. T., & McIntosh, R. P. (1950). The interrelations of certain analytic and synthetic phytosociological characters. Ecology, 31(3), 434–455.

    Google Scholar 

  • Das, B., Reddy, V. S., Krishnaiah, M., Sharma, A. V. S., Kumar, R., Rao, J. V., & Sridhar, V. (2007). Acetylated pseudoguaianolides from Parthenium hysterophorus and their cytotoxic activity. Phytochemistry, 68(15), 2029–2034.

    CAS  Google Scholar 

  • Dawson, W., & Schrama, M. (2016). Identifying the role of soil microbes in plant invasions. Journal of Ecology, 104, 1211–1218.

    Google Scholar 

  • Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., & Singh, B. K. (2015). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 1–8.

    Google Scholar 

  • DeWalt, S. J., Denslow, J. S., & Ickes, K. (2004). Natural-enemy release facilitates habitat expansion of the invasive tropical shrub Clidemiahirta. Ecology, 85(2), 471–483.

    Google Scholar 

  • Dogra, K. S., Kohli, R. K., Sood, S. K., & Dobhal, P. K. (2009). Impact of Ageratum conyzoides L. on the diversity and composition of vegetation in the Shivalik hills of Himachal Pradesh (Northwestern Himalaya), India. International Journal of Biodiversity and Conservation, 1(1), 135–145.

  • Domenech, R., Vila, M., Gesti, J., & Serrasolses, I. (2006). Neighbourhood association of Cortaderiaselloana invasion, soil properties and plant community structure in Mediterranean coastal grasslands. Actaoecologica, 29(2), 171–177.

    Google Scholar 

  • Downey, P. O., & Richardson, D. M. (2016) Alien plant invasions and native plant extinctions: a six-threshold framework. AoB Plants, 8, plw047.

  • Ehrenfeld, J. G. (2003). Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6, 503–523.

    CAS  Google Scholar 

  • Eno, C. F. (1960). Nitrate production in the field by incubating the soil in polyethylene bags. Soil Science Society of America Journal, 24(4), 277–279.

    CAS  Google Scholar 

  • Etana, A., Kelbessa, E., & Soromessa, T. (2015). Impact of Parthenium hysterophorus L. (Asteraceae) on soil chemical properties and its distribution in a reserve area: A case study in Awash National Park (ANP), Ethiopia. Journal of Soil Science and Environment Management, 6, 116–124.

    Google Scholar 

  • Evans, H. C. (1997). Parthenium hysterophorus, a review of its weed status and the possibilities for biological control. Biocontrol News and information, 18(3), 89N-98N.

    Google Scholar 

  • FAO. (2013). Restoration of grasslands and forests for climate change mitigation and adaptation and promotion of Ecosystem Services. APRC/14/6 Rev.1. 12 Pp.

  • Flory, S. L., Clay, K., Emery, S. M., Robb, J. R., & Winters, B. (2015). Fire and non-native grass invasion interact to suppress tree regeneration in temperate deciduous forests. Journal of Applied Ecology, 52(4), 992–1000.

    Google Scholar 

  • GISD. (2018). Global Invasive Species Database (GISD). http://www.iucngisd.org/gisd/

  • Gnanavel, I. (2013). Parthenium hysterophorus L.: A Major Threat to Natural and Agro Eco-Systems in India. Science International, 1(5), 124–131.

  • Goyal, C. P., & Brahma, B. C. (2001). A ray of hope against Parthenium weed in Rajaji National Park. Indian Forester, 127, 409–414.

    Google Scholar 

  • Gunaseelan, V. N. (1987). Parthenium as an additive with cattle manure in biogas production. Biological Wastes, 21(3), 195–202.

    CAS  Google Scholar 

  • Gupta, N., Martin, B. M., Metcalfe, D. D., & Rao, P. V. (1996). Identification of a novel hydroxyproline-rich glycoprotein as the major allergen in Parthenium pollen. The Journal of Allergy and Clinical Immunology, 98(5), 903–912.

    CAS  Google Scholar 

  • Gupta, O. P., & Sharma, J. J. (1977). Parthenium menace in India and possible control measures. FAO Plant Protection Bulletin, 25, 112–117.

    Google Scholar 

  • Heneghan, L., Fatemi, F., Umek, L., Grady, K., Fagen, K., & Workman, M. (2006). The invasive shrub European buckthorn (Rhamnuscathartica, L.) alters soil properties in Midwestern U.S. woodlands. Applied Soil Ecology, 32, 142–148.

    Google Scholar 

  • Hundessa, N., & Belachew, K. (2017). Socio-economic impacts of Parthenium hysterophorus in East Shewa and West Arsi zones of Ethiopia. International Journal of Agriculture Innovations and Research, 6(2), 5–11.

    Google Scholar 

  • Jackson, M. L. (1958). Soil Chemical Analysis. (p. 498). Prentice Hall.

    Google Scholar 

  • Javaid, A. (2008). Use of Parthenium weed as green manure for maize and mungbean production. Philippine Agriculture Scientist, 91(4), 478–482.

    Google Scholar 

  • Javaid, A., & Shafique, S. (2009). Invasion of noxious alien weed Parthenium hysterophorus L. in grazing lands of Lahore, Pakistan. Journal of Animal and Plant Sciences, 19(3), 149–153.

  • Javaid, A., Anjum, T., & Rukhsana, B. (2006). Chemical control of Parthenium hysterophorus. International Journal of Biology and Biotechnology, 3(2), 387–390.

  • Javaid. A., Shfique, S., & Shafique, S. (2007). Cause of rapid spread of Parthenium hysterophorus L. in Pakistan and possible control measures-a review. Pakistan Journal of Botany, 39(7), 2611–2618.

  • Kanchan, S. D., & Jayachandra. (1980). Alleolopathic effects of Parthenium hysterophorusL. IV. Identification of inhibitors, Plant and Soil, 55, 67–75.

    CAS  Google Scholar 

  • Kappes, H., Lay, R., & Topp, W. (2007). Changes in different trophic levels of litter-dwelling macrofauna associated with giant knotweed invasion. Ecosystems, 10(5), 734–744.

    Google Scholar 

  • Keith, A. M., Brooker, R. W., Osler, G. H. R., Chapman, S. J., Burslem, D. F. R. P., & van der Wal, R. (2009). Strong impacts of belowground tree inputs on soil nematode trophic composition. Soil Biology and Biochemistry, 41(6), 1060–1065.

    CAS  Google Scholar 

  • Khaliq, A., Aslam, F., Matloob, A., Hussain, S., Tanveer, A., Alsaadawi, I., & Geng, M. (2015). Residual phytotoxicity of parthenium: Impact on some winter crops, weeds and soil properties. Ecotoxicology and Environmental Safety, 122, 352–359.

    CAS  Google Scholar 

  • Kohli, R. K., Batish, D. R., Singh, H., & Dogra, K. S. (2006). Status, invasiveness and environmental threats of three tropical American invasive weeds (Parthenium hysterophorusL., Ageratum conyzoidesL., Lantana camara L.). Biological Invasions, 8(7), 1501–1510.

  • Kohli, R. K., Kuldip, S. D., Daizy, R. B., & Singh, H. P. (2004). Impact of invasive plants on the structure and composition of natural vegetation of North-Western Indian Himalayas. Weed Technology, 18(1), 1296–1300.

    Google Scholar 

  • Kohli, R. K., & Batish, D. R. (1994). Exhibition of allelopathy by Parthenium hyserophorus L. in agroecosystems. Tropical Ecology, 71, 478–491.

    Google Scholar 

  • Kourtev, P. S., Ehrenfeld, J. G., & Häggblom, M. (2002). Exotic species alter microbial community structure and function in the soil. Ecology, 83(11), 3152–3166.

    Google Scholar 

  • Koutika, L. S., Vanderhoeven, S., Chapuis-Lardy, L., Dassonville, N., & Meerts, P. (2007). Assessment of changes in soil organic matter after invasion by exotic plant species. Biology and Fertility of Soils, 44, 331–341.

    Google Scholar 

  • Kumar, S. (2009). Biological control of Parthenium in India: Status and prospects. Indian Journal of Weed Science, 41(1 & 2), 1–18.

    Google Scholar 

  • Kumar, S., & Rohatgi, N. (1999). The role of invasive weeds in changing floristic diversity. Annals of Forestry, 71(1), 147–150.

    Google Scholar 

  • Kumari, P., Sahu, P. K., Soni, M. Y., & Awasthi, P. (2014). Impact of Parthenium hysterophorus invasion on species diversity of cultivated fields of Bilaspur (C.G.). India Journal of Agricultural Research, 5, 754–764.

    Google Scholar 

  • Kumschick, S., Bacher, S., Evans, T., Marková, Z., Pergl, J., Pyšek, P., Vaes-Petignat, S., van der Veer, G., Vilà, M., & Nentwig, W. (2015). Comparing impacts of alien plants and animals in Europe using a standard scoring system. Journal of Applied Ecology, 52(3), 552–561.

    Google Scholar 

  • Lakshmi, C., & Srinivas, C. R. (2007). Parthenium: A wide angle view. Indian Journal of Dermatology, Venereology and Leprology, 73(5), 296–306.

    Google Scholar 

  • Lakshmi, C., & Srinivas, C. R. (2012). Parthenium the terminator: An update. Indian Dermatology Online Journal, 3(2), 89–100.

    Google Scholar 

  • Lata, H., Garg, V. K., & Gupta, R. K. (2008). Sequestration of nickel from aqueous solution onto activated carbon prepared from Parthenium hysterophorusL. Journal of Hazardous materials, 157(2–3), 503–509.

    CAS  Google Scholar 

  • Lau, J. A., & Suwa, T. (2016). The changing nature of plant– microbe interactions during a biological invasion. Biological Invasion, 18, 3527–3534.

    Google Scholar 

  • Levine, J. M., Vila, M., D’Antonio, C. M., Dukes, J. S., Grigulis, K., & Lavorel, S. (2003). Mechanisms underlying the impacts of exotic plant invasions. Proceeding of the Royal Society of London Series B, 270, 775–781.

    Google Scholar 

  • Lewis, W., Dixit, A. B., & Wedner, H. J. (1988). Reproductive biology of Parthenium hysterophorus(Asteraceae). Journal of Palynology, 23–24, 73–82.

    Google Scholar 

  • Liao, C., et al. (2008). Altered ecosystem carbon and nitrogen cycles by plant invasion, a meta-analysis. New Phytologist, 177, 706–714.

    CAS  Google Scholar 

  • Linders, T. E. W., Schaffner, U., Eschen, R., et al. (2019). Direct and indirect effects of invasive species: Biodiversity loss is a major mechanism by which an invasive tree affects ecosystem functioning. Journal of Ecology, 107(6), 2660–2672.

    Google Scholar 

  • Liu, J., Liangzhi, Y., Amini, M., Obersteiner, M., Herrero, M., & Zehnder, A. J. B. (2010). A high-resolution assessment on global nitrogen flows in cropland. Proceeding of the National academy of Science of the United States of America, 107(17), 8035–8040.

    CAS  Google Scholar 

  • Maishi, A. I., Ali, P. K. S., Chaghtai, S. A., & Khan, G. (1998). A proving of Parthenium hysterophorus L. British Homoeopathic Journal, 87(1), 17–21.

    Google Scholar 

  • Marwat, K. B., Hashim, S., & Ali, H. (2010). Weed management: A case study from North-West Pakistan. Pakistan Journal Botany 42(SI), 341–353.

  • Marwat, K., B., Khan, M.,A., Nawaz, A., & Amin, A. (2008). Parthenium hysterophrousL. a potential source of bioherbicide. Pakistan Journal of Botany, 40(5), 1933–1942.

  • Mason, T. J., Frencha, K., & Russell, K. G. (2007). Moderate impacts of plant invasion and management regimes in coastal hind dune seed banks. Biological Conservation, 134, 428–439.

    Google Scholar 

  • McFadyen, R. E. (1995). Parthenium weed and human health in Queensland. Australian Family Physician, 24(8), 1455–1459.

    CAS  Google Scholar 

  • Mekonnen, G. (2017). Threats and Management Options of Parthenium (Parthenium hysterophorus L.) in Ethiopia. Agricultural Research and Technology: Open Access Journal P 10. https://doi.org/10.19080/ARTOAJ.2017.10.555798

  • Melillo, J. M. (1981). Nitrogen cycling in deciduous forests. In Clark, F. E., & Rosswall, T. (eds.), Nitrogen cycling in Terrestrial Ecosystems. Ecological Bulletin, Swedish Natural Science Research Council, Stockholm, Sweden, 33, 427–442.

  • Navie, S. C., McFadyen, R. E., Panetta, F. D., & Adkins, S. W. (1996). The biology of Australian weeds. 27. Parthenium hysterophorus L. Plant Protection Quarterly, 11(2), 76–88.

  • Nigatu, L., Hassen, A., Sharma, J., & Adkins, S. W. (2010). Impact of Parthenium hysterophorus on grazing land communities in north-eastern Ethiopia. Weed Biology and Management, 10(3), 143–152.

    Google Scholar 

  • Parepa, M., Fischer, M., & Bossdorf, O. (2013). Environmental variability promotes plant invasion. Nature Communications, 4, 1604. https://doi.org/10.1038/ncomms2632

    Article  CAS  Google Scholar 

  • Pastor, J., Aber, J. D., McClaugherty, C. A., & Melillo, J. M. (1984). Aboveground production and N and P cycling along a nitrogen mineralization gradient on Black hawk Island, Wisconsin. Ecology, 65(1), 256–328.

    CAS  Google Scholar 

  • Pathak, P. S., & Dagar, J. (2016). Indian grasslands and their management. Grassland: A Global Resource Perspective. (pp. 3–36). Publisher.

    Google Scholar 

  • Perinchery, A. (2019). Parthenium could take over large parts of India under current climate change. In: Mongabay. https://india.mongabay.com/2019/06/parthenium-could-take-over-large-parts-of-india-under-current-climate-change/. Accessed 27 June 2017.

  • Picman, J., & Picman, A. K. (1984). Autotoxicity in Parthenium hysterophorus and Its Possible Role in Control of Germination. Biochemical Systematics and Ecology, 12(3), 287–292.

    CAS  Google Scholar 

  • Piper, C. S. (1944). Soil and Plant Analysis. Interscience Publication Inc.

    Google Scholar 

  • Prescott, C. E., & Zukswert, J. M. (2016). Invasive plant species and litter decomposition: time to challenge assumptions. New Phytologist, 209(1), 5–7.

    Google Scholar 

  • Pritekel, C., et al. (2006). Impacts from invasive plant species and their control on the plant community and belowground eco- system at Rocky Mountain National Park, USA. Applied Soil Ecology, 32, 132–141.

    Google Scholar 

  • Raghubanshi, A. S. (1992). Effect of topography on selected soil properties and nitrogen mineralization in a dry tropical forest. Soil Biology and Biochemistry, 24(2), 145–150.

    Google Scholar 

  • Raghubanshi, A. S., & Tripathi, A. (2009). Effect of disturbance, habitat fragmentation and alien invasive plants on floral diversity in dry tropical forests of Vindhyan highland: a review. Tropical ecology, 50(1), 57–69.

    Google Scholar 

  • Raghubanshi, A. S., Rai, L. C., Gaur, J. P., & Singh, J. S. (2005). Invasive alien species and bio- diversity in India. Current Science, 88(4), 539–540.

    Google Scholar 

  • Rashid, H., Khan, M. A., Amin, A., Nawab, K., Hussain, N., & Bhowmik, P. K. (2008). Effect of Parthenium hysterophorus L., root extracts on seed germination and growth of maize and barley. American Journal of Plant Science and Biotechnology, 2, 51–55.

    Google Scholar 

  • Rawat, G. S., & Adhikari, B. S. (Eds.) (2015). Ecology and Management of Grassland Habitats in India, ENVIS Bulletin: Wildlife & Protected Areas. Vol. 17; Wildlife Institute of India, Dehradun-248001, India.

  • Reinhardt, C., VanderLaan, M., Belz, R. G., Hurle, K., & Foxcroft, L. (2006). Production of the allelochemical parthenin in leaves of Parthenium hysterophorusL. Journal of Plant Diseases and Protection, XX, 427–433.

  • Ricciardi, A., Blackburn, T. M., Carlton, J. T., Dick, J. T. A., Hulme, P. E., Iacarella, J. C., et al. (2017). Invasion science: a horizon scan of emerging challenges and opportunities. Trends in Ecology & Evolution, 32(6), 464–474.

    Google Scholar 

  • Sagar, R., Pandey, A., & Singh, J. S. (2012). Composition, species diversity, and biomass of the herbaceous community in dry tropical forest of northern India in relation to soil moisture and light intensity. The Environmentalist, 32(4), 485–493.

    Google Scholar 

  • Sakai, A. K., Allendorf, F. W., Holt, J. S., Lodge, D. M., Molofsky, J., Baughman, K. A., Cabin, S., Cohen, R. J., Allstrand, J. E., McCauley, N. C., O’Neil, D. E., Parker, I. M., Thompson, J. N., & Waller, S. G. (2001). The population biology of invasive species. Annual Review of Ecology and Systems, 32, 305–332.

    Google Scholar 

  • Shabbir, A., & Bajwa, R. (2006). Distribution of Parthenium weed (Parthenium hysterophorus L.), an alien invasive weed species threatening the biodiversity of Islamabad. Weed Biology and Management, 6(2), 89 - 95.

  • Shrestha, B. B., Shabbir, A., & Adkins, S. W. (2015). Parthenium hysterophorus in Nepal: A review of its weed status and possibilities for management. Weed Research, 55(2), 132–144.

    Google Scholar 

  • Simberloff, D., Martin, J. L., Genovesi, P., et al. (2013). Impacts of biological invasions: what’s what and the way forward. Trends in Ecology & Evolution, 28(1), 58–66.

    Google Scholar 

  • Singh, H. P., Batish, D. R., Pandher, J. K., & Kohli, R. K. (2003). Assessment of allelopathic properties of Parthenium hysterophorous residues. Agriculture, Ecosystem and Environment, 95, 537–541.

    Google Scholar 

  • Singh, J. S., Lauenroth, W. K., & Milchunas, D. G. (1983). Geography of grassland ecosystems. Progress in Physical Geography, 7(1), 46–80.

    Google Scholar 

  • Singh, K. P. (1989). Mineral nutrients in tropical dry deciduous forest and savanna ecosystems in India. In J. Pastor (Ed.), Mineral Nutrients in Tropical Forest and Savanna Ecosystems. (pp. 153–168). Blackwell Scientific.

    Google Scholar 

  • Singh, R., & Garg, A. (2014). Parthenium hysterophorus L. - neither noxious nor an obnoxious weed. Indian Forester, 140(12), 1260–1262.

  • Sirulnik, A. G., Allen, E. B., Meixner, T., & Allen, M. F. (2007). Impacts of anthropogenic N additions on nitrogen mineralization from plant litter in exotic annual grasslands. Soil Biology and Biochemistry, 39, 24–32.

    CAS  Google Scholar 

  • Sperry, L. J., Belnap, J., & Evans, R. D. (2006). Bromus tectorum invasion alters nitrogen dynamics in an undisturbed arid grassland ecosystem. Ecology, 87, 603–615.

    CAS  Google Scholar 

  • Srivastava, S. C., Jha, A. K., & Singh, J. S. (1989) Changes with time in soil biomass C, N and P of mine spoils in a dry tropical environment, Canadian Journal of Soil Science, 69(4), 849–855.

  • Tadesse, B., Das, T. K., & Yaduraju, N. T. (2010). Effects of some integrated management options on Parthenium interference in sorghum. Weed Biology and Management, 10, 160–169.

    CAS  Google Scholar 

  • Tang, S. Q., Wei, F., & Zeng, L. Y. (2009). Multiple introductions are responsible for the disjunct distributions of invasive Parthenium hysterophorus in China: Evidence from nuclear and chloroplast DNA. Weed Research, 49, 373–380.

    CAS  Google Scholar 

  • Tanveer, A., Khaliq, A., Ali, H. H., Mahajan, G., & Chauhan, B. S. (2015). Interference and management of parthenium: The world’s most important invasive weed. Crop Protection, 68, 49–59.

    Google Scholar 

  • Tefera, T. (2002). Allelopathic effects of Parthenium hysterophorus extracts on seed germination and seedling growth of Eragrostistef. Journal of Agronomy and Crop Science, 188, 306–310.

    Google Scholar 

  • Timsina, B., Shrestha, B., Rokaya, M., & Münzbergová, Z. (2011). Impact of Parthenium hysterophorus L. invasion on plant species composition and soil properties of grassland communities in Nepal. Flora - Morphology, Distribution. Functional Ecology of Plants, 206(3), 233–240.

  • Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An extraction method for measuring soil microbial biomass. Soil Biology and Biochemistry, 19(6), 703–707.

    CAS  Google Scholar 

  • Venkataiah, B., Ramesh, C., Ravindranath, N., & Das, B. (2003). Charminarone, a seco-pseudoguaianolide from Parthenium hysterophorus. Phytochemistry, 63(4), 383–386.

    CAS  Google Scholar 

  • Vila, M., Espinar, J. L., Hejda, M., et al. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecology Letters, 14(7), 702–708.

    Google Scholar 

  • Vitousek, P. M., & Walker, L. P. (1989). Biological invasions by Myricafaya in Hawaii: Plant demography, nitrogen fixation and ecosystem effects. Ecological Monographs, 59(3), 247–265.

    Google Scholar 

  • Wahab, S. (2005). Management of Parthenium through an integrated approach initiatives, achievements and research opportunities in India. Proceeding of the 2nd International Conference on Parthenium Management (pp: 55–59) December 5–7, University of Agricultural Science, Bangalore, India.

  • Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63(4), 251–264.

    CAS  Google Scholar 

  • Walkley, A. J., & Black, I. A. (1934). Estimation of soil organic carbon by the chromic acid titration method. Soil Science, 37(1), 29–38.

    CAS  Google Scholar 

  • World Resources Institute - PAGE. (2000). Downloaded from http://earthtrends.wri.org/text/forests-grasslands-drylands/map-229.htm

  • Zavaleta, E. S., Shaw, M. R., Chiariello, N. R., Mooney, H. A., & Field, C. B. (2003). Additive effects of simulated climate changes, elevated CO2, and nitrogen deposition on grassland diversity. Proceedings of the National Academy of Sciences of the United States of America, 100(13), 7650–7654.

    CAS  Google Scholar 

  • Zhang, P., Li, B., Wu, J. S. (2019). Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecology Letters, 22(1), 200–210.

Download references

Acknowledgements

Priyanka Srivastava thanks the Banaras Hindu University for providing the experimental infrastructure.

Funding

Research was funded by the University Grants Commission, New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priyanka Srivastava.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, P., Raghubanshi, A.S. Impact of Parthenium hysterophorus L. invasion on soil nitrogen dynamics of grassland vegetation of Indo-Gangetic plains, India. Environ Monit Assess 193, 286 (2021). https://doi.org/10.1007/s10661-021-09070-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-021-09070-6

Keywords

Navigation