Skip to main content
Log in

Abstract

In the article, we present the best possible parameters \(\alpha ,\beta \) such that the double inequality

$$\begin{aligned} S_{\alpha }(a,b)<T_{4}(a,b)<S_{\beta }(a,b) \end{aligned}$$

holds for \(a, b>0\) with \(a\ne b\), and provide new bounds for the complete elliptic integral of the second kind, where \(S_{p}(a,b)\) and \(T_{4}(a,b)\) are the generalized Seiffert mean and Toader mean of order 4, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Chu, Y.-M., Wang, M.-K., Qiu, S.-L., Qiu, Y.-F.: Sharp generalized Seifert mean bounds for Toader mean. Abstr. Appl. Anal. Article ID 605259, 1–8 (2011)

  2. Witkowski, A.: On Seiffert-like means. J. Math. Inequal. 9(4), 2627–2638 (2015)

    MathSciNet  MATH  Google Scholar 

  3. He, X.-H., Qian, W.-M., Xu, H.-Z., Chu, Y.-M.: Sharp power mean bounds for two Sándor-Yang means. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 113(3), 2627–2638 (2019)

  4. Qian, W.-M., He, Z.-Y., Chu, Y.-M.: Approximation for the complete elliptic integral of the first kind. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114(2), Paper No. 57, 1–12 (2020)

  5. Nowicka, M., Witkowski A.: Optimal bounds for the sine and hyperbolic tangent means IV. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115(2), Paper No. 79, 1–11 (2021)

  6. Toader, G.H.: Some means values related to the arithmetic-geometric mean. J. Math. Anal. Appl. 218, 358–368 (1998)

    Article  MathSciNet  Google Scholar 

  7. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. U.S. Government Printing Office, Washington (1964)

    MATH  Google Scholar 

  8. Byrd, P.F., Friedman, M.D.: Handbook of Elliptic Integrals for Engineers and Scientists. Springer, New York (1971)

    Book  Google Scholar 

  9. Yang, Z.-H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Monotonicity rule for the quotient of two functions and its application. J. Inequal. Appl. 2017, Article 106, 1–13 (2017)

  10. Huang, T.-R., Yan, S.-Y., Ma, X.-Y., Chu, Y.-M.: Monotonicity properties and bounds for the complete \(p\)-elliptic integrals. J. Inequal. Appl. 2018, Article 239, 1–11 (2018)

  11. Yang, Z.-Y., Chu, Y.-M., Zhang, W.: High accuracy asymptotic bounds for the complete elliptic integral of the second kind. Appl. Math. Comput. 348, 552–564 (2019)

    Article  MathSciNet  Google Scholar 

  12. Wang, M.-K., Chu, H.-H., Chu, Y.-M.: Precise bounds for the weighted Hölder mean of the complete \(p\)-elliptic integrals. J. Math. Anal. Appl. 480(2) (2019). https://doi.org/10.1016/j.jmaa.2019.123388

  13. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal. 21(2), 536–549 (1990)

    Article  MathSciNet  Google Scholar 

  14. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 23(2), 512–524 (1992)

    Article  MathSciNet  Google Scholar 

  15. Qiu, S.-L., Vamanamurthy, M.K., Vuorinen, M.: Some inequalities for the growth of elliptic integrals. SIAM J. Math. Anal. 29(5), 1224–1237 (1998)

    Article  MathSciNet  Google Scholar 

  16. Alzer, H.: Sharp inequalities for the complete elliptic integral of the first kind. Math. Proc. Camb. Philos. Soc. 124(2), 309–314 (1998)

    Article  MathSciNet  Google Scholar 

  17. Chu, Y.-M., Qiu, S.-L., Wang, M.-K.: Sharp inequalities involving the power mean and complete elliptic integral of the first kind. Rocky Mt. J. Math. 43(5), 1489–1496 (2013)

    Article  MathSciNet  Google Scholar 

  18. Hua, Y.: Optimal Hölder mean inequality for the complete elliptic integrals. Math. Inequal. Appl. 16(3), 823–829 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Yin, L., Qi, F.: Some inequalities for complete elliptic integrals. Appl. Math. E-Notes 14, 193–199 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Wang, G.-D., Zhang, X.-H., Chu, Y.-M.: A power mean inequality involving the complete elliptic integrals. Rocky Mt. J. Math. 44(5), 1661–1667 (2014)

    Article  MathSciNet  Google Scholar 

  21. Alzer, H., Richards, K.: A note on a function involving complete elliptic integrals: monotonicity, convexity, inequalities. Anal. Math. 41(3), 133–139 (2015)

    Article  MathSciNet  Google Scholar 

  22. Alzer, H., Richards, K.: Inequalities for the ratio of complete elliptic integrals. Proc. Am. Math. Soc. 145(4), 1661–1670 (2017)

    Article  MathSciNet  Google Scholar 

  23. Yang, Z.-H., Qian, W.M., Chu, Y.-M.: Monotonicity properties and bounds involving the complete elliptic integrals of the first kind. Math. Inequal. Appl. 21(4), 1185–1199 (2018)

    MathSciNet  MATH  Google Scholar 

  24. Yang, Z.-H., Tian, J.-F.: Sharp inequalities for the generalized elliptic integrals of the first kind. Ramanujan J. 48(1), 91–116 (2019)

    Article  MathSciNet  Google Scholar 

  25. Yang, Z.-H., Tian, J.-F.: Convexity and monotonicity for elliptic integrals of the first kind and applications. Appl. Anal. Discrete Math. 13(1), 240–260 (2019)

    Article  MathSciNet  Google Scholar 

  26. Anderson, G.D., Vamanamurthy, M.K., Vuorinen, M.: Conformal Invariants, Inequalities, and Quasiconformal Maps. Wiley, New York (1997)

    MATH  Google Scholar 

  27. Zhao, T.-H., Wang, W.-K., Zhang, W., Chu, Y.-M.: Quadratic transformation inequalities for Gaussian hypergeometric function, J. Inequal. Appl. 2018, Article 251, 1–15 (2018)

  28. Qiu, S.-L., Ma, X.-Y., Chu, Y.-M.: Sharp Landen transformation inequalities for hypergeometric functions, with applications. J. Math. Anal. Appl. 474(2), 1306–1337 (2019)

    Article  MathSciNet  Google Scholar 

  29. Wang, M.-K., Chu, Y.-M., Zhang, W.: Monotonicity and inequalities involving zero-balanced hypergeometric function. Math. Inequal. Appl. 22(2), 601–617 (2019)

    MathSciNet  MATH  Google Scholar 

  30. Wang, M.-K., Chu, Y.-M., Zhang, W.: Precise estimates for the solution of Ramanujan’s generalized modular equation. Ramanujan J. 49(3), 653–668 (2019)

    Article  MathSciNet  Google Scholar 

  31. Wang, M.-K., Zhang, W., Chu, Y.-M.: Monotonicity, convexity and inequalities involving the generalized elliptic integrals. Acta Math. Sci. 39B, 1440–1450 (2019)

    Article  MathSciNet  Google Scholar 

  32. Yang, Z. H., Qian, W.-M., Chu, Y.-M., Zhang, W.: Optimal bounds for the generalized Euler-Mascheroni constant. J. Inequal. Appl. 2017, Article 210, 1–17 (2017)

  33. Huang, T.-R., Han, B.-W., Ma, X.-Y., Chu, Y.-M.: On rational bounds for the gamma function. J. Inequal. Appl. 2018, Article 118, 1–9 (2018)

  34. Meng, M.-L.: Inequalities for a class of new arithmetic means. In: Thesis (B.S.), Huzhou University (in Chinese) (2017)

  35. Chu, Y.-M., Wang, M.-K., Qiu, S.-L.: Optimal combinations bounds of root-square and arithmetic means for Toader mean. Proc. Indian Acad. Sci. Math. Sci. 122(1), 41–51 (2012)

    Article  MathSciNet  Google Scholar 

  36. Chu, Y.-M., Wang, M.-K.: Optimal Lehmer mean bounds for the Toader mean. Results Math. 61(3–4), 223–229 (2012)

    Article  MathSciNet  Google Scholar 

  37. Li, W.-H., Zheng, M.-M.: Some inequalities for bounding Toader mean. J. Funct. Spaces Appl. 2013, Article ID 394194, 1–5 (2013)

  38. Hua, Y., Qi, F.: A double inequality for bounding Toader mean by the centroidal mean. Proc. Indian Acad. Sci. Math. Sci. 124(4), 527–531 (2014)

    Article  MathSciNet  Google Scholar 

  39. Chu, H.-H., Qian, W.-M., Chu, Y.-M., Song, Y.-Q.: Optimal bounds for a Toader-type mean in terms of one-parameter quadratic and contraharmonic means. J. Nonlinear Sci. Appl. 9(5), 3424–3432 (2016)

    Article  MathSciNet  Google Scholar 

  40. Wang, M.-K., Chu, Y.-M., Jiang, Y.-P., Qiu, S.-L.: Bounds of the perimeter of an ellipse using arithmetic, geometric and harmonic means. Math. Inequal. Appl. 17(1), 101–111 (2014)

    MathSciNet  MATH  Google Scholar 

  41. Yang, Zh-H, Qian, W.-M., Chu, Y.-M., Zhang, W.: On approximating the arithmetic-geometric mean and complete elliptic integral of the first kind. J. Math. Anal. Appl. 462(2), 1714–1726 (2018)

    Article  MathSciNet  Google Scholar 

  42. Barnard, R.W., Pearce, K., Richards, K.C.: An inequality involving the generalized hypergeometric function and the arc length of an ellipse. SIAM J. Math. Anal. 31(3), 693–699 (2000)

    Article  MathSciNet  Google Scholar 

  43. Alzer, H., Qiu, S.-L.: Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172(2), 289–312 (2004)

    Article  MathSciNet  Google Scholar 

  44. Qian, W.-M., Chu, Y.-M.: Sharp bounds for a special quasi-arithmetic mean in terms of arithmetic and geometric means with two parameters. J. Inequal. Appl. 2017 Article 274, 1–10 (2017)

  45. Zhao, T.-H., Zhou, B. C., Wang, M.-K., Chu, Y.-M.: On approximating the quasi-arithmetic mean. J. Inequal. Appl. 2019, Article 42, 1–12 (2019)

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 11971142), the Natural Science Foundation of Zhejiang Province (Grant No. LY19A010012) and HZNU Scientific Research Funding (Grant No. 4085C50218204112).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Tiehong Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhao, T. Sharp generalized Seiffert mean bounds for the Toader mean of order 4. RACSAM 115, 106 (2021). https://doi.org/10.1007/s13398-021-01048-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01048-w

Keywords

Mathematics Subject Classification

Navigation