Skip to main content
Log in

Generalized Finite-Time Stability and Stabilization for Fractional-Order Memristive Neural Networks

  • Published:
Optical Memory and Neural Networks Aims and scope Submit manuscript

Abstract

This paper is concerned with the generalized finite-time stability, boundedness and stabilization for fractional-order memristive neural networks (FMNNs) with the fractional-order 0 < α < 1. Under the fractional-order Filippov differential inclusion frame, FMNNs are modelled as a fractional-order differential equation with discontinuous right-hand. Based on the topological degree property, the existence of equilibrium point of FMNNs is proved. By means of the generalized Gronwall inequality, the Laplace transform and the Lyapunov functional candidate, some conditions to guarantee the generalized finite-time stability and boundedness for FMNNs are derived in terms of linear matrix inequalities (LMIs). In addition, by using appropriate feedback controller, the generalized finite-time stabilization condition is also addressed in forms of LMIs. Finally, two examples are given to demonstrate the validity of the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Naseri, M., Raji, M.A., Hantehzadeh, M.R., Farouk, A., Boochani, A., and Solaymani, S., A scheme for secure quantum communication network with authentication using GHZ-like states and cluster states controlled teleportation, Quantum Inf. Process., 2015, vol. 14, pp. 4279–4295.

    Article  MathSciNet  MATH  Google Scholar 

  2. Farouk, A., Batle, J., Elhoseny, M., Naseri, M., Lone, M., Fedorov, A., Alkhambashi, M., Ahmed, S.H., and Abdel-Aty, M., Robust general N user authentication scheme in a centralized quantum communication network via generalized GHZ states, Front. Phys., 2018, vol. 13, p. 130306.

    Article  Google Scholar 

  3. Farouk, A., Zakaria, M., Megahed, A., and Omara, F.A., A generalized architecture of quantum secure direct communication for N disjointed users with authentication, Sci. Rep., 2015, vol. 5, p. 16080.

    Article  Google Scholar 

  4. Batle, J., Naseri, M., Ghoranneviss, M., Farouk, A., Alkham-bashi, M., and Elhoseny, M., Shareability of correlations in multiqubit states: Optimization of nonlocal monogamy inequalities, Phys. Rev. A, 2017, vol. 95, p. 032123.

    Article  Google Scholar 

  5. Liu, M. and Wu, H., Stochastic finite-time synchronization for discontinuous semi-Markovian switching neural networks with time delays and noise disturbance, Neurocomputing, 2018, vol. 310, pp. 246–264.

    Article  Google Scholar 

  6. Zhao, W. and Wu, H., Fixed-time synchronization of semi-Markovian jumping neural networks with time-varying delays, Adv. Differ. Equations, 2018, vol. 213. https://doi.org/10.1186/s13662-018-1666-z

  7. Wang, Z. and Wu, H., Global synchronization in fixed time for semi-Markovian switching complex dynamical networks with hybrid couplings and time-varying delays, Nonlinear Dyn., 2019, vol. 95, pp. 2031–2062.

    Article  MATH  Google Scholar 

  8. Peng, X., Wu, H., Song, K., and Shi, J., Non-fragile chaotic synchronization for discontinuous neural networks with time-varying delays and random feedback gain uncertainties, Neurocomputing, 2018, vol. 273, pp. 89–100.

    Article  Google Scholar 

  9. Butzer, P.L. and Westphal, U., An Introduction to Fractional Calculus, Singapore: World Sci., 2000.

    Book  MATH  Google Scholar 

  10. Hilfer, R., Applications of Fractional Calculus in Physics, Hackensack, NJ: World Sci., 2001.

    MATH  Google Scholar 

  11. Kilbas, A.A., Srivastava, H.M., and Trujillo, J.J., Theory and Application of Fractional Differential Equations, Amsterdam: Elsevier, 2006.

    MATH  Google Scholar 

  12. Arena, P., Caponetto, R., Fortuna, L., and Porto, D., Bifurcation and chaos in noninteger order cellular neural networks, Int. J. Bifurcation Chaos, 1998, vol. 8, pp. 1527–1539.

    Article  MATH  Google Scholar 

  13. Petras, I., A note on the fractional-order cellular neural networks, in 2006 Int. Joint Conf. on Neural Networks, Canada, BC, Vancouver, Sheraton Vancouver Wall Centre Hotel, 16–21 July, 2006, pp. 1021–1024.

  14. Wu, H., Zhang, X., Xue, S., Wang, L., and Wang, Y., LMI conditions to global Mittag–Leffler stability of fractional-order neural networks with impulses, Neurocomputing, 2016, vol. 193, pp. 148–154.

    Article  Google Scholar 

  15. Zhang, S., Yu, Y., and Wang, Q., Stability analysis of fractional-order Hopfield neural networks with discontinuous activation functions, Neurocomputing, 2016, vol. 171, pp. 1075–1084.

    Article  Google Scholar 

  16. Peng, X., Wu, H., Song, K., and Shi, J., Global synchronization in finite time for fractional-order neural networks with discontinuous activations and time delays, Neural Networks, 2017, vol. 94, pp. 46–54.

    Article  MATH  Google Scholar 

  17. Peng, X. and Wu, H., Robust Mittag–Leffler synchronization for uncertain fractional-order discontinuous neural networks via non-fragile control strategy, Neural Process. Lett., 2018, vol. 48, pp. 1521–1542.

    Article  Google Scholar 

  18. Peng, X., Wu, H., and Cao, J., Global non-fragile synchronization in finite time for fractional-order discontinuous neural networks with nonlinear growth activations, IEEE Trans. Neural Networks Learning Syst., 2019, vol. 30, pp. 2123–2137.

    Article  MathSciNet  Google Scholar 

  19. Wu, H., Wang, L., and Niu, P., Global projective synchronization in finite time of nonidentical fractional-order neural networks based on sliding mode control strategy, Neurocomputing, 2017, vol. 235, pp. 264–273.

    Article  Google Scholar 

  20. Peng, X., and Wu, H., Non-fragile robust finite-time stabilization and performance analysis for fractional-order delayed neural networks with discontinuous activations under the asynchronous switching, Neural Comput. Appl., 2018. https://doi.org/10.1007/s00521-018-3682-z

  21. Chua, L.O., Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 1971, vol. 18, pp. 507–519.

    Article  Google Scholar 

  22. Tour, J. and T. He, The fourth element, Nature, 2008, vol. 453, pp. 42–43.

    Article  Google Scholar 

  23. Itoh, M. and Chua, L.O., Memristor cellular automata and memris- tor discrete-time cellular neural networks, Int. J. Bifurcation Chaos, 2009, vol. 19, pp. 3605–3656.

    Article  MATH  Google Scholar 

  24. Pershin, Y.V. and Ventra, M.D., Experimental demonstration of associative memory with memristive neural networks, Neural Networks, 2010, vol. 23, pp. 881–886.

    Article  Google Scholar 

  25. Zhao, Y., Jiang, Y., Feng, J., and Wu, L., Modeling of memristor-based chaotic systems using nonlinear Wiener adaptive filters based on backslash operator, Chaos, Solitons Fractals, 2016, vol. 87, pp. 12–16.

    Article  MathSciNet  MATH  Google Scholar 

  26. Cantley, K.D., Subramaniam, A., Stiegler, H.J., Chapman, R.A., and Vogel, E.M., Neural learning circuits utilizing nanocrystalline silicon transistors and memristors, IEEE Trans. Neural Networks Learning Syst., 2012, vol. 23, pp. 565–573.

    Article  Google Scholar 

  27. Kim, H., Sah, M.P., Yang, C., Roska, T., and Chua, L.O., Neural synaptic weighting with a pulse-based memristor circuit, IEEE Trans. Circuits Syst., I: Regular Papers, 2012, vol. 59, pp. 148–158.

    Article  MathSciNet  Google Scholar 

  28. Sharifiy, M.J. and Banadaki, Y.M., General spice models for memristor and application to circuit simulation of memristor-based synapses and memory cells, J. Circuits, Syst. Comput., 2010, vol. 19, pp. 407–424.

    Article  Google Scholar 

  29. Bao, G. and Zeng, Z., Multistability of periodic delayed recurrent neural network with memristors, Neural Comput. Appl., 2013, vol. 23, pp. 1963–1967.

    Article  Google Scholar 

  30. Xin, Y., Li, Y., Cheng, Z., and Huang, X., Global exponential stability for switched memristive neural networks with time-varying delays, Neural Networks, 2016, vol. 80, pp. 34–42.

    Article  MATH  Google Scholar 

  31. Yang, D., Qiu, G., and Li, C., Global exponential stability of memristive neural networks with impulse time window and time-varying delays, Neurocomputing, 2016, vol. 171, pp. 1021–1026.

    Article  Google Scholar 

  32. Zhang, G. and Shen, Y., New algebraic criteria for synchronization stability of chaotic memristive neural networks with time-varying delays, IEEE Trans. Neural Networks Learning Syst., 2013, vol. 24, pp. 1701–1707.

    Article  Google Scholar 

  33. Wu, H., Li, X., and Yao, R., Weak, modified and function projective synchronization of chaotic memristive neural networks with time delays, Neurocomputing, 2015, vol. 149, pp. 667–676.

    Article  Google Scholar 

  34. Wu, H., Zhang, X., and Li, R., Adaptive anti-synchronization and Hg anti-synchronization for memristive neural networks with mixed time delays and reaction-diffusion terms, Neurocomputing, 2015, vol. 168, pp. 726–740.

    Article  Google Scholar 

  35. Zhang, G., Shen, Y., and Wang, L., Global anti-synchronization of a class of chaotic memristive neural networks with time-varying delays, Neural Networks, 2013, vol. 46, pp. 1–8.

    Article  MATH  Google Scholar 

  36. Wu, H., Han, X., and Wang, L., Exponential passivity of memristive neural networks with mixed time-varying delays, J. Franklin Inst., 2016, vol. 353, pp. 688–712.

    Article  MathSciNet  MATH  Google Scholar 

  37. Chen, J., Zeng, Z., and Jiang, P., Global Mittag–Leffler stability and synchronization of memristor-based fractional-order neural networks, Neural Networks, 2014, vol. 51, pp. 1–8.

    Article  MATH  Google Scholar 

  38. Chen, J., Wu, R., Cao, J., and Liu, J., Stability and synchronization of memristor-based fractional-order delayed neural networks, Neural Networks, 2015, vol. 71, pp. 37–44.

    Article  MATH  Google Scholar 

  39. Velmurugan, G., Rakkiyappan, R., and Cao, J., Finite-time synchronization of fractional-order memristor-based neural networks with time delays, Neural Networks, 2016, vol. 73, pp. 36–46.

    Article  MATH  Google Scholar 

  40. Bao, H. and Cao, J., Projective synchronization of fractional-order memristor-based neural networks, Neural Networks, 2015, vol. 63, pp. 1–9.

    Article  MATH  Google Scholar 

  41. Mathiyalagan, K., Anbuvithya, R., Sakthivel, R., Parka, J.H., and Prakash, P., Reliable stabilization for memristor-based recurrent neural networks with time-varying delays, Neurocomputing, 2015, vol. 153, pp. 140–147.

    Article  Google Scholar 

  42. Song, K., Wu, H., and Wang, L., Lur’e–Postnikov Lyapunov function approach to global robust Mittag–Leffler stability of fractional-order neural networks, Adv. Differ. Equations, 2017, vol. 232, no. 2017. https://doi.org/10.1186/s13662-017-1298-8

  43. Lazarevic, M.P. and Spasic, A.M., Finite-time stability analysis of fractional-order time-delay systems: Gronwall’s approach, Math. Comput. Modell., 2009, vol. 49, pp. 475–481.

    Article  MathSciNet  MATH  Google Scholar 

  44. Filippov, A.F., Differential equations with discontinuous right hand side, Mat. Sb., 1960, vol. 93, pp. 99–128.

    MathSciNet  MATH  Google Scholar 

  45. Gao, W., Guirao, J.L.G., Abdel-Aty, M., and Xi, W., An independent set degree condition for fractional critical deleted graphs, Discrete Contin. Dyn. Syst., Ser. S, 2019, vol. 12, pp. 877–886.

    MATH  Google Scholar 

  46. Batle, J., Ciftja, O., Naseri, M., Ghoranneviss, M., Farouk, A., and Elhoseny, M., Equilibrium and uniform charge distribution of a classical two-dimensional system of point charges with hard-wall confinement, Phys. Scr., 2017, vol. 92, p. 055 801.

    Article  Google Scholar 

Download references

Funding

The authors would like to thank the Editors and the Reviewers for their insightful comments, which help to enrich the content and improve the presentation of this paper.

This work was supported by the Natural Science Foundation of Hebei Province of China (A2018203288).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huaiqin Wu.

Ethics declarations

The authors declare that they have no conflicts of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lirui Zhao, Huaiqin Wu Generalized Finite-Time Stability and Stabilization for Fractional-Order Memristive Neural Networks. Opt. Mem. Neural Networks 30, 11–25 (2021). https://doi.org/10.3103/S1060992X21010070

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1060992X21010070

Keywords:

Navigation