Skip to main content
Log in

Global genotype by environment trends in growth traits for Eucalyptus dunnii

  • Published:
New Forests Aims and scope Submit manuscript

Abstract

Eucalyptus dunnii Maiden (Dunn’s white gum) is a fast-growing tall tree with a restricted natural distribution in south-east Australia and favorable wood properties for pulp production. In this study, selected and native forest family seedlots of E. dunnii were evaluated in 17 open-pollinated progeny trials located in Australia, Uruguay, China, Argentina, and Spain for diameter at breast height and total height between the ages of 1 and 7 years. The generality of the factor analytic approach was extended to accommodate unbalance in treatment effects and traits, by modelling each dimension of the genotype covariance matrix as a unique combination of location, age, and trait. Genetic correlations between the two growth traits, between trials and between ages were generally high with only five trials exhibiting average trial-trial correlations below 0.7, indicating genotype by environment interactions were low. Estimated individual seedlot repeatability varied from 0.04 to 0.18 for both traits. The results of this study show that selection and deployment across multiple trials within Australia, Uruguay, China, and Argentina is possible from a single breeding program of E. dunnii, however some environments will require further investigation to determine the drivers of the observed GxE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material

The datasets generated during and/or analyzed during the current study are not publicly available due to commercial confidence and intellectual property but are available from the corresponding author on reasonable request.

References

  • Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19:716–723

    Article  Google Scholar 

  • Apiolaza LA (2009) Very early selection for solid wood quality: screening for early winners. Ann For Sci 66:1–10

    Article  Google Scholar 

  • Arnold RJ, Clarke B, Luo J (2004) Trials of Cold Tolerant Eucalypt Species in Cooler Regions of South Central China. ACIAR Technical Report No. 57, Australian Centre for International Agricultural Research, Canberra, 106 pp

  • Atkin FC, Dieters MJ, Stringer JK (2009) Impact of depth of pedigree and inclusion of historical data on the estimation of additive variance and breeding values in a sugarcane breeding program. Theor Appl Genet 119:555–565. https://doi.org/10.1007/s00122-009-1065-7

    Article  PubMed  Google Scholar 

  • Backman M, Garcia De León J (2003) Correlations of pulp and paper properties at an early age and full rotation age of five eucalyptus species. In: 28th EUCEPA Conference: sustainable development for the pulp and paper industry: proceedings, oral and poster presentations. pp 2–4

  • Basford K, Cooper M (1998) Genotype×environment interactions and some considerations of their implications for wheat breeding in Australia. Aust J Agric Res 49:153–174

    Article  Google Scholar 

  • Benson J, Hager T (1993) The distribution, abundance and habitat of Eucalyptus dunnii (Myrtaceae) (Dunn’s white gum) in New South Wales. Cunninghamia 3:123–145

    Google Scholar 

  • Binkley D, Campoe OC, Alvares CA, Carneiro RL, Stape JL (2020) Variation in whole-rotation yield among Eucalyptus genotypes in response to water and heat stresses: The TECHS project. For Ecol Manag 462:117953

    Article  Google Scholar 

  • Booth TH, Jovanovic T, New M (2002) A new world climatic mapping program to assist species selection. For Ecol Manag 163:111–117. https://doi.org/10.1016/S0378-1127(01)00531-X

    Article  Google Scholar 

  • Borralho N (1992) Genetic control of growth of Eucalyptus globulus in Portugal. 1. Genetic and phenotypic parameters. Silvae Genet 41:39–45

    Google Scholar 

  • Borralho N (1994) Heterogeneous selfing rates and dominance effects in estimating heritabilities from open-pollinated progeny. Can J For Res 24:1079–1082

    Article  Google Scholar 

  • Burdon R (1977) Genetic correlation as a concept for studying genotype-environment interaction in forest tree breeding. Silvae Genet 26:168–175

    Google Scholar 

  • Bush D, Kain D, Kanowski P, Matheson C (2014) Genetic parameter estimates informed by a marker-based pedigree: a case study with Eucalyptus cladocalyx in southern Australia. Tree Genet Genom 11:798. https://doi.org/10.1007/s11295-014-0798-x

    Article  Google Scholar 

  • Byrne M (2008) Phylogeny, diversity and evolution of eucalypts. In ‘Plant genome: biodiversity and evolution. Vol. 1. Part E. Phanerogams–Angiosperm’.(Eds AK Sharma, A Sharma) pp. 303–346. Science Publishers: Enfield, NH, USA

  • Callister AN, England N, Collins S (2011) Genetic analysis of Eucalyptus globulus diameter, straightness, branch size, and forking in Western Australia. Can J For Res 41:1333–1343. https://doi.org/10.1139/X11-036

    Article  Google Scholar 

  • Chaix G, Gerber S, Razafimaharo V, Vigneron P, Verhaegen D, Hamon S (2003) Gene flow estimation with microsatellites in a Malagasy seed orchard of Eucalyptus grandis. Theor Appl Genet 107:705–712

    Article  PubMed  Google Scholar 

  • Chaix G, Vigneron P, Razafimaharo V, Hamon S (2007) Are phenological observations sufficient to estimate the quality of seed crops from a Eucalyptus grandis open-pollinated seed orchard? Consequences for seed collections. New For 33:41–52

    Article  Google Scholar 

  • Cooper M, Brennan P, Sheppard J (1996) A strategy for yield improvement of wheat which accommodates large genotype by environment interactions. In: Cooper M, Hammer GL (eds) Plant adaptation and crop improvement. CAB International, Wallingford, pp 487–512

    Chapter  Google Scholar 

  • Costa e Silva J, Hardner C, Tilyard P, Potts B (2011) The effects of age and environment on the expression of inbreeding depression in Eucalyptus globulus. Heredity 107:50–60

    Article  PubMed  PubMed Central  Google Scholar 

  • Costa e Silva J, Potts BM, Dutkowski GW (2006) Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genet Genom 2:61–75

    Article  Google Scholar 

  • de Araujo MJ, de Paula RC, Campoe OC, Carneiro RL (2019) Adaptability and stability of eucalypt clones at different ages across environmental gradients in Brazil. For Ecol Manag 454:117631

    Article  Google Scholar 

  • de Leon N, Jannink J-L, Edwards JW, Kaeppler SM (2016) Introduction to a special issue on genotype by environment interaction. Crop Sci 56:2081–2089

    Article  Google Scholar 

  • de los Santos E (2016) Effect of tree age of Eucalyptus dunnii from Uruguay on wood basic density, pulping yield, wooc chemical composition and fibre morphology. Masters Thesis, Universidad de la República, Montevideo, Uruguay

  • Dieters M, White T, Hodge G (1995) Genetic parameter estimates for volume from fuil-sib tests of slash pine (Pinus elliottii). Can J For Res 25:1397–1408

    Article  Google Scholar 

  • Dobner J, Batista K, Sartório I, Arce J, Quadros D (2017) Crescimento e desempenho econômico de Eucalyptus dunnii em diferentes sítios no planalto sul do Brasil. Floresta 47:397–406

    Article  Google Scholar 

  • Eldridge K, Davidson J, Harwood C, van Wyk G (1993) Eucalypt domestication and breeding. Clarendon Press, Oxford

    Google Scholar 

  • Eldridge K, Griffin AR (1983) Selfing effects in Eucalyptus regnans. Silvae Genet 32:216–221

    Google Scholar 

  • Falconer D, Mackay T (1996) An Introduction to quantitative genetics, 4th edn. Prentice Hall, London

    Google Scholar 

  • Falconer DS (1952) The Problem of Environment and Selection. Am Nat 86:293–298. https://doi.org/10.1086/281736

    Article  Google Scholar 

  • Gallo R et al (2018) Growth and wood quality traits in the genetic selection of potential Eucalyptus dunnii Maiden clones for pulp production. Ind Crops Prod 123:434–441. https://doi.org/10.1016/j.indcrop.2018.07.016

    Article  Google Scholar 

  • Grant JC, Nichols JD, Smith RGB, Brennan P, Vanclay JK (2010) Site index prediction of Eucalyptus dunnii Maiden plantations with soil and site parameters in sub-tropical eastern Australia. Aust For 73:234–245

    Article  Google Scholar 

  • Greaves BL, Borralho NM, Raymond CA, Evans R, Whiteman P (1997) Age-age correlations in, and relationships between basic density and growth in Eucalyptus nitens. Silvae Genet 46:264–269

    Google Scholar 

  • Greaves BL, Borralho NMG, Raymond CA (2003) Early selection in eucalypt breeding in Australia: optimum selection age to minimise the total cost of kraft pulp production. New For 25:201–210. https://doi.org/10.1023/a:1022996930025

    Article  Google Scholar 

  • Grieser J (2006) New LocClim 1.10: local climate estimator. FAO, Rome

    Google Scholar 

  • Griffin A, Cotterill P (1988) Genetic variation in growth of outcrossed, selfed and open-pollinated progenies of Eucalyptus regnans and some implications for breeding strategy. Silvae Genet 37:124–131

    Google Scholar 

  • Grosser C, Potts B, Vaillancourt RE (2010) Microsatellite based paternity analysis in a clonal Eucalyptus nitens seed orchard. Silvae Genet 59:57–62

    Article  Google Scholar 

  • Gu Z, Eils R, Schlesner M (2016) Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32:2847–2849

    Article  PubMed  Google Scholar 

  • Hahsler M, Hornik K, Buchta C (2008) Getting things in order: an introduction to the R package seriation. J Stat Softw 25:1–34

    Article  Google Scholar 

  • Hardner C (2017) Exploring opportunities for reducing complexity of genotype-by-environment interaction models. Euphytica 213:248

    Article  Google Scholar 

  • Hardner C, Dieters M, DeLacy I, Neal J, Fletcher S, Dale G, Basford K (2011) Identifying deployment zones for Eucalyptus camaldulensis x E. globulus and x E. grandis hybrids using factor analytic modelling of genotype by environment interaction. Aust For 74:30–35

    Article  Google Scholar 

  • Hardner C, Potts B (1995) Inbreeding depression and changes in variation after selfing in Eucalyptus globulus ssp. globulus. Silvae Genet 44:46–54

    Google Scholar 

  • Hardner C, Tibbits W (1998) Inbreeding depression for growth, wood and fecundity traits in Eucalyptus nitens. For Genet 5:11–20

    Google Scholar 

  • Hardner CM, Dieters M, Dale G, DeLacy I, Basford KE (2010) Patterns of genotype-by-environment interaction in diameter at breast height at age 3 for eucalypt hybrid clones grown for reafforestation of lands affected by salinity. Tree Genet Genom 6:833–851

    Article  Google Scholar 

  • Hardner CM, Healey AL, Downes G, Herberling M, Gore PL (2016) Improving prediction accuracy and selection of open-pollinated seed-lots in Eucalyptus dunnii Maiden using a multivariate mixed model approach. Ann For Sci 73:1035–1046

    Article  Google Scholar 

  • Harris F (2007) The effect of competition on stand, tree, and wood growth and structure in subtropical Eucalyptus grandis plantations. PhD thesis, Southern Cross University, Lismore, NSW

  • Hayatgheibi H, Fries A, Kroon J, Wu HX (2018) Estimation of genetic parameters, provenance performances, and genotype by environment interactions for growth and stiffness in lodgepole pine (Pinus contorta). Scand J For Res:1–11

  • Henry RJ, Kole C (2014) Genetics, genomics and breeding of eucalypts. CRC Press Inc, London

    Book  Google Scholar 

  • Henson M et al. (2004) Genetic parameters of wood properties in a 9 year old E. dunnii progeny trial in NSW, Australia. In: Eucalyptus in a Changing World, Aveiro, Portugal

  • Henson M, Vanclay JK (2004) The value of good sites and good genotypes: an analysis of Eucalyptus dunnii plantations in NSW. In: The Economics and Management of High Productivity Plantations, Lugo, Spain. pp 27–30

  • Hill W (1984) On selection among groups with heterogeneous variance. Anim Sci 39:473–477

    Article  Google Scholar 

  • Hodge G, Volker P, Potts B, Owen J (1996) A comparison of genetic information from open-pollinated and control-pollinated progeny tests in two eucalypt species. Theor Appl Genet 92:53–63

    Article  PubMed  Google Scholar 

  • Hodge GR, Dvorak WS (1999) Genetic parameters and provenenance variation of Pinus tecunumanii in 78 international trials. Forest Gen 6:157–180

    Google Scholar 

  • Jovanovic T, Arnold R, Booth T (2000) Determining the climatic suitability of Eucalyptus dunnii for plantations in Australia, China and Central and South America. New For 19:215–226

    Article  Google Scholar 

  • Kenward MG, Roger JH (1997) Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53:983–997

    Article  PubMed  Google Scholar 

  • Kien N, Jansson G, Harwood C, Almqvist C (2009) Clonal variation and genotype by environment interactions in growth and wood density in Eucalyptus camaldulensis at three contrasting sites in Vietnam. Silvae Genet 59:17–28

    Article  Google Scholar 

  • Li C et al (2017a) Genetic parameters for growth and wood mechanical properties in Eucalyptus cloeziana F. Muell. New For 48:33–49. https://doi.org/10.1007/s11056-016-9554-4

    Article  Google Scholar 

  • Li Y, Suontama M, Burdon RD, Dungey HS (2017b) Genotype by environment interactions in forest tree breeding: review of methodology and perspectives on research and application. Tree Genet Genom 13:60. https://doi.org/10.1007/s11295-017-1144-x

    Article  Google Scholar 

  • Lima JL, Souza JCd, Ramalho MAP, Andrade HB, Sousa LCd (2011) Early selection of parents and trees in Eucalyptus full-sib progeny tests. Crop Breed Appl Biot 11:10–16

    Article  Google Scholar 

  • Lopez GA, Potts BM, Dutkowski GW, Apiolaza LA, Gelid P (2002) Genetic variation and inter-trait correlations in Eucalyptus globulus base population trials in Argentina. For Gen 9:217–231

    Google Scholar 

  • Marcó MA, White TL (2002) Genetic parameter estimates and genetic gains for Eucalyptus grandis and E. dunnii in Argentina. For Gen 9:205–215

    Google Scholar 

  • Matheson A, Cotterill P (1990) Utility of genotype× environment interactions. For Ecol Manag 30:159–174

    Article  Google Scholar 

  • Matheson AC, Raymond CA (1986) A review of provenance x environment interaction: its practical importance and use with particular reference to the tropics. Commonw For Rev 65:283–302

    Google Scholar 

  • Ministerio de Ganadería AyP (2018) National Forest Mapping Results Report. https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/publicaciones/informe-resultados-cartografia-forestal-nacional-2018. Accessed 28 May 2020

  • Núñez P et al (2011) Molecular Certification Laboratory of Arauco. BMC Proc 5:181. https://doi.org/10.1186/1753-6561-5-S7-P181

    Article  Google Scholar 

  • Osorio L, White T, Huber D (2001) Age trends of heritabilities and genotype-by-environment interactions for growth traits and wood density from clonal trials of Eucalyptus grandis Hill ex Maiden. Silvae Genet 50:108–116

    Google Scholar 

  • Piepho HP, Möhring J, Melchinger AE, Büchse A (2008) BLUP for phenotypic selection in plant breeding and variety testing. Euphytica 161:209–228. https://doi.org/10.1007/s10681-007-9449-8

    Article  Google Scholar 

  • Potts B, Savva M (1988) Self-incompatibility in Eucalyptus. In: Knox R, Sing M, Troiani L (eds) Pollination 88. Plant Cell Biology Research Centre, University of Melbourne, Melbourne, pp 165-170

  • Potts B, Volker P, Hodge G, Borralho N, Hardner C, Owen J (1995) Genetic limitations in the exploitation of base populations of Eucalyptus globulus ssp. globulus. In: Potts B, Borralho N, Reid J, Cromer R, Tibbits W, Raymond C (eds) Eucalypt plantations: improving fibre yield and quality. Cooperative Research Centre for Temperate Hardwood Forestry, Hobart, pp 217-221

  • Raymond CA (2011) Genotype by environment interactions for Pinus radiata in New South Wales, Australia. Tree Genet Genom 7:819–833

    Article  Google Scholar 

  • Resende MDV, Thompson R (2004) Factor analytic multiplicative mixed models in the analysis of multiple experiments. Rev Mat Estat 22:31–52

    Google Scholar 

  • Resquin F, Navarro-Cerrillo R, Rachid-Casnati C, Hirigoyen A, Carrasco-Letelier L, Duque-Lazo J (2018) Allometry, growth and survival of three Eucalyptus species (Eucalyptus benthamii Maiden and Cambage, E. dunnii Maiden and E. grandis Hill ex Maiden) in high-density plantations in Uruguay. Forests 9:745. https://doi.org/10.3390/f9120745

    Article  Google Scholar 

  • Resquin F, Navarro-Cerrillo RM, Carrasco-Letelier L, Casnati CR (2019) Influence of contrasting stocking densities on the dynamics of above-ground biomass and wood density of Eucalyptus benthamii, Eucalyptus dunnii, and Eucalyptus grandis for bioenergy in Uruguay. For Ecol Manag 438:63–74. https://doi.org/10.1016/j.foreco.2019.02.007

    Article  Google Scholar 

  • Rodríguez P, Perea T, Jiménez B, Francia M, Parra L, Durán Z (2015) Field performance of Eucalyptus stands for bioenergy in Southern Spain. Asp Appl Biol 131:199–209

    Google Scholar 

  • Shi T, Arnold RJ, Kang W, Duan F, Qian Y, Xie H, Xu J (2016) Genetic variation and gains for two generations of Eucalyptus dunnii in China. Aust For 79:15–24

    Article  Google Scholar 

  • Silva PHM, Brune A, Alvares CA, Amaral Wd, Moraes MLTd, Grattapaglia D, de Paula RC (2019a) Selecting for stable and productive families of Eucalyptus urophylla across a country-wide range of climates in Brazil. Can J For Res 49:87–95

    Article  Google Scholar 

  • Silva PHM, Marco M, Alvares CA, Lee D, de Moraes MLT, de Paula RC (2019b) Selection of Eucalyptus grandis families across contrasting environmental conditions. Crop Breed Appl Biotechnol 19:47–54. https://doi.org/10.1590/1984-70332019v19n1a07

    Article  Google Scholar 

  • Smith A, Cullis B, Thompson R (2001) Analyzing variety by environment data using multiplicative mixed models and adjustments for spatial field trend. Biometrics 57:1138–1147

    Article  PubMed  Google Scholar 

  • Smith AB, Borg LM, Gogel BJ, Cullis BR (2019) Estimation of factor analytic mixed models for the analysis of multi-treatment multi-environment trial data. J Agric Biol Environ Stat. https://doi.org/10.1007/s13253-019-00362-6

    Article  Google Scholar 

  • Smith HJ, Henson M (2007) Achievements in forest tree genetic improvement in Australia and New Zealand 3: Tree improvement of Eucalyptus dunnii Maiden. Aust For 70:17–22. https://doi.org/10.1080/00049158.2007.10676257

    Article  Google Scholar 

  • Squillace A (1974) Average genetic correlations among offspring from open-pollinated forest trees. Silvae Genet 23:149–155

    Google Scholar 

  • Stackpole DJ, Vaillancourt RE, de Aguigar M, Potts BM (2010) Age trends in genetic parameters for growth and wood density in Eucalyptus globulus. Tree Genet Genom 6:179–193. https://doi.org/10.1007/s11295-009-0239-4

    Article  Google Scholar 

  • Tambarussi EV, Pereira FB, da Silva PHM, Lee D, Bush D (2018) Are tree breeders properly predicting genetic gain? A case study involving Corymbia species. Euphytica 214:150. https://doi.org/10.1007/s10681-018-2229-9

    Article  Google Scholar 

  • Tan B, Grattapaglia D, Wu HX, Ingvarsson PK (2017) Genomic prediction reveals significant non-additive effects for growth in hybrid Eucalyptus. bioRxiv:178160

  • Torres-Dini D et al (2016) Clonal selection of Eucalyptus grandis x Eucalyptus globulus for productivity, adaptability, and stability, using SNP markers. Silvae Genet 65:30–38

    Article  Google Scholar 

  • Van Eeuwijk F, Cooper M, DeLacy I, Ceccarelli S, Grando S (2001) Some vocabulary and grammar for the analysis of multi-environment trials, as applied to the analysis of FPB and PPB trials. Euphytica 122:477–490

    Article  Google Scholar 

  • Van Wyk G (1990) Genetic improvement of timber yield and wood quality in Eucalyptus Grandis (Hill) Maiden: Part I. Genetic parameters of growth characteristics. S Afr For J 153:1–11

    Google Scholar 

  • Van Wyk W, Gerischer G (1994) Pulping characteristics of Eucalyptus provenance trials grown in the Western Cape: Part 1: Comparison between species. S Afr For J 170:1–5. https://doi.org/10.1080/00382167.1994.9629667

    Article  Google Scholar 

  • Varghese M, Harwood C, Hegde R, Ravi N (2008) Evaluation of provenances of Eucalyptus camaldulensis and clones of E. camaldulensis and E. tereticornis at contrasting sites in southern India. Silvae Genet 57:170–179

    Article  Google Scholar 

  • Velilla E, Borralho N, Vargas-Reeve F, Fernández M, Emhart V Patterns of additive and non-additive genotype by environment interaction for growth of Eucalyptus globulus in southern and central Chile. In: Eucalyptus 2018: Managing Eucalyptus plantation under global changes, Montpellier, France, 2018

  • Volker PW, Potts BM, Borralho NM (2008) Genetic parameters of intra-and inter-specific hybrids of Eucalyptus globulus and E. nitens. Tree Genet Genom 4:445–460

    Article  Google Scholar 

  • Wang G, Arnold R, Gardiner C, Zhang J, Wu Z (1999) Seed source variation for growth in Eucalyptus dunnii; results from trials in south central China. Aust For 62:120–127

    Article  Google Scholar 

  • Wei X, Borralho N (1998) Genetic control of growth traits of Eucalyptus urophylla S.T. Blake in south east China. Silvae Genet 47:158–165

    Google Scholar 

  • White I (2017) Pin function for asreml-R. http://www.homepages.ed.ac.uk/iwhite//asreml/

  • White TL, Adams WT, Neale DB (2007) Forest genetics. CAB International Wallingford

  • Wu H, Yeh F, Pharis R (1998) Study of early selection in tree breeding. Silvae Genet 47:146–155

    Google Scholar 

  • Wu HX, Matheson AC (2005) Genotype by environment interactions in an Australia-wide radiata pine diallel mating experiment: implications for regionalized breeding. For Sci 51:29–40

    Google Scholar 

  • Wu HX, Powell MB, Yang JL, Ivković M, McRae TA (2007) Efficiency of early selection for rotation-aged wood quality traits in radiata pine. Ann For Sci 64:1–9

    Article  Google Scholar 

  • Yang H, Su G (2016) Impact of phenotypic information of previous generations and depth of pedigree on estimates of genetic parameters and breeding values. Livest Sci 187:61–67

    Article  Google Scholar 

  • Yang HY et al (2018) Genotypic variation and genotype-by-environment interactions in growth and wood properties in a cloned Eucalyptus urophylla x E. tereticornis family in southern China. For Sci 64:225–232. https://doi.org/10.1093/forsci/fxx011

    Article  Google Scholar 

  • Yu Q, Pulkkinen P (2003) Genotype–environment interaction and stability in growth of aspen hybrid clones. For Ecol Manag 173:25–35

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by funding from an Innovation Connections grant. We thank Montes del Plata, UPM, Arauco Argentina, ENCE, Yong’an Forest Company, Hancock Victoria Plantations, and the Chinese Eucalypt Research Company for the provision of data from trials. We thank Barry Vaughan for reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael G. Bird.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table

Table 7 Summary of the number of each trials seedlots under categories of bulk seed orchard collections (Bulk), a mixture of experimental, operational clones and controls (Mix/Clones), an E. grandis seedlot (E. grandis), seedlots collected from the native forest population (Native Forest) and 1st and 2nd generation OP maternal selected seedlots including trial experimental design

7.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bird, M.G., Hardner, C.M., Dieters, M. et al. Global genotype by environment trends in growth traits for Eucalyptus dunnii. New Forests 53, 101–123 (2022). https://doi.org/10.1007/s11056-021-09846-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11056-021-09846-1

Keywords

Navigation